Most clinical anti-EGFR antibodies do not neutralize both wtEGFR and EGFRvIII activation in glioma

Neuro Oncol. 2019 Aug 5;21(8):1016-1027. doi: 10.1093/neuonc/noz073.

Abstract

Background: Although epidermal growth factor receptor (EGFR) and its truncated, autoactive mutant EGFR variant (v)III are bona fide drivers of tumorigenesis in some gliomas, therapeutic antibodies developed to neutralize this axis have not improved patient survival in a limited number of trials. Previous studies using cells transduced to exogenously express EGFRvIII may have compromised mechanistic studies of anti-EGFR therapeutics. Therefore, we re-assessed the activity of clinical EGFR antibodies in patient-derived gliomaspheres that endogenously express EGFRvIII.

Methods: The antitumor efficacy of antibodies was assessed using in vitro proliferation assays and intracranial orthografts. Receptor activation status, antibody engagement, oncogenic signaling, and mechanism of action after antibody treatment were analyzed by immunoprecipitation and western blotting. Tracking of antibody receptor complexes was conducted using immunofluorescence.

Results: The EGFR domain III-targeting antibodies cetuximab, necitumumab, nimotuzumab, and matuzumab did not neutralize EGFRvIII activation. Chimeric monoclonal antibody 806 (ch806) neutralized EGFRvIII, but not wild-type (wt)EGFR activation. Panitumumab was the only antibody that neutralized both EGFRvIII and wtEGFR, leading to reduction of p-S6 signaling and superior in vitro and in vivo antitumor activity. Mechanistically, panitumumab induced recycling of receptor but not degradation as previously described. Panitumumab, via its unique avidity, stably cross-linked EGFRvIII to prevent its activation, while ch806 induced a marked reduction in the active EGFRvIII disulphide-bonded dimer.

Conclusions: We discovered a previously unknown major resistance mechanism in glioma in that most EGFR domain III-targeting antibodies do not neutralize EGFRvIII. The superior in vitro and in vivo antitumor activity of panitumumab supports further clinical testing of this antibody against EGFRvIII-stratified glioma.

Keywords: EGFRvIII; antibody; glioma; neutralization; resistance.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Antibodies, Monoclonal / therapeutic use*
  • Cell Line, Tumor
  • ErbB Receptors* / antagonists & inhibitors
  • Glioma* / drug therapy
  • Humans
  • Signal Transduction

Substances

  • Antibodies, Monoclonal
  • epidermal growth factor receptor VIII
  • ErbB Receptors