Effect of Circadian Rhythm on Metabolic Processes and the Regulation of Energy Balance

Ann Nutr Metab. 2019;74(4):322-330. doi: 10.1159/000500071. Epub 2019 Apr 23.


Background: The circadian timing system or circadian clock plays a crucial role in many biological processes, such as the sleep-wake cycle, hormone secretion, cardiovascular health, glucose homeostasis, and body temperature regulation. Energy balance is also one of the most important cornerstones of metabolic processes, whereas energy imbalance is associated with many diseases (i.e., obesity, diabetes, cardiovascular disease). Circadian clock is the main regulator of metabolism, and this analysis provides an overview of the bidirectional effect of circadian rhythm on metabolic processes and energy balance.

Summary: The circadian timing system or circadian clock plays a crucial role in many biological processes, but the increase in activities that operate 24/7 and the common usage of television, internet, and mobile phones almost 24 h a day leads to a gradual decrease in the adequate sleeping time. According to recent research, long-term circadian disruptions are associated with many pathological conditions such as premature mortality, obesity, impaired glucose tolerance, diabetes, psychiatric disorders, anxiety, depression, and cancer progression, whereas short-term disruptions are associated with impaired wellness, fatigue, and loss of concentration. In this review, the circadian rhythm in metabolic processes and their effect on energy balance were examined. Key Messages: Circadian rhythm has a bidirectional interaction with almost all metabolic processes. Therefore, understanding the main reason affecting the circadian clock and creating treatment guidelines using circadian rhythm may increase the success of disease treatment. Chronopharmacology, chrononutrition, and chronoexercise are the novel treatment approaches in metabolic balance.

Keywords: Circadian rhythm; Energy; Metabolism.

Publication types

  • Review

MeSH terms

  • Circadian Rhythm*
  • Energy Metabolism / physiology*
  • Homeostasis
  • Humans