Background: Balance tests are commonly used in clinical practice with applicability in injury prevention and return to sport decisions. While most sports injuries occur in a changing environment where reacting to a non-planned stimulus is of great importance, these balance tests only evaluate pre-planned movements without taking these dynamics environmental aspects into account. Therefore, the goal of this paper was to develop a clinician-friendly test that respects these contextual interactions and to describe the test protocol of an adapted Y-balance test that includes environmental perception and decision-making.
Methods: Within the theoretical construct of balance and adaptability, balance errors were selected as outcome measures for balance ability and, visuomotor reaction time and accuracy are selected as outcome measures for adaptability. A reactive balance task was developed and described using the Y-balance test for the balance component, while the FitLight training systemTM was chosen for the environmental perception and decision-making component of the test.
Results: This paper describes the test protocol of a reactive balance test as an adapted Y-balance test. The LED-lights of the FitLight training systemTM are placed at 80% of the maximal reach distance for each axis along the Y-Balance test kitTM. To induce cognitive load within the visuomotor task, colours were fixed to a corresponding axis, and both the order of the visual stimuli as the interstimulus time were randomised to integrate environmental perception and decision-making.
Conclusion: The reactive balance test is a functional test that allows clinicians to score balance ability and athlete adaptability easily.
Keywords: Adaptability; Balance; Injury prevention; Return to sport; Stability; Visuomotor reaction time.