Cancer stem cells (CSCs) are a small group of cells within a tumor that preserve stemness and enhance regrowth of cancer cells. CSCs have important implications in resistance to conventional therapies and tumor relapse, although their detailed properties remain unknown. Thus, CSCs represent promising targets to improve cancer treatment. So far, a number of cell surface markers containing glycans have been exploited to identify and isolate CSCs. Cell surface glycans are well-known markers for specific cell types and also play important cellular roles, such as regulation of cell signaling. In normal stem cells, including embryonic and tissue stem cells, glycan markers in an undifferentiated state have been identified. These markers are mostly known to regulate signaling pathways required for maintenance of stemness. In contrast, CSC-specific glycans have not been well characterized yet. In this review, we summarize functional commonalities between CSCs and normal stem cells in glycan-mediated signaling pathways. Identification of CSC-specific glycans may lead to early diagnosis and radical treatment of cancer.