Long-term persistence of infectious Legionella with free-living amoebae in drinking water biofilms

Int J Hyg Environ Health. 2019 May;222(4):678-686. doi: 10.1016/j.ijheh.2019.04.007. Epub 2019 Apr 27.


Prolific growth of pathogenic Legionella pneumophila within engineered water systems and premise plumbing, and human exposure to aerosols containing this bacterium results in the leading health burden of any water-related pathogen in developed regions. Ecologically, free-living amoebae (FLA) are an important group of the microbial community that influence biofilm bacterial diversity in the piped-water environment. Using fluorescent microscopy, we studied in-situ the colonization of L. pneumophila in the presence of two water-related FLA species, Willaertia magna and Acanthamoeba polyphaga in drinking water biofilms. During water flow as well as after periods of long-stagnation, the attachment and colonization of L. pneumophila to predeveloped water-biofilm was limited. Furthermore, W. magna and A. polyphaga showed no immediate interactions with L. pneumophila when introduced to the same natural biofilm environment. A. polyphaga encysted within 5-7 d after introduction to the tap-water biofilms and mostly persisted in cysts till the end of the study period (850 d). W. magna trophozoites, however, exhibited a time delay in feeding on Legionella and were observed with internalized L. pneumophila cells after 3 weeks from their introduction to the end of the study period and supported putative (yet limited) intracellular growth. The culturable L.pneumophila in the bulk water was reduced by 2-log over 2 years at room temperature but increased (without a change in mip gene copies by qPCR) when the temperature was elevated to 40 °C within the same closed-loop tap-water system without the addition of nutrients or fresh water. The overall results suggest that L. pneumophila maintains an ecological balance with FLA within the biofilm environment, and higher temperature improve the viability of L. pneumophila cells, and intracellular growth of Legionella is possibly cell-concentration dependent. Observing the preferential feeding behavior, we hypothesize that an initial increase of FLA numbers through feeding on a range of other available bacteria could lead to an enrichment of L. pneumophila, and later force predation of Legionella by the amoeba trophozoites results in rapid intracellular replication, leading to problematic concentration of L. pneumophila in water. In order to find sustainable control options for legionellae and various other saprozoic, amoeba-resisting bacterial pathogens, this work emphasizes the need for better understanding of the FLA feeding behavior and the range of ecological interactions impacting microbial population dynamics within engineered water systems.

Keywords: Biofilms; Engineered water systems; Free-living amoebae; Legionella; Premise plumbing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amoeba / isolation & purification*
  • Amoeba / physiology
  • Biofilms
  • Drinking Water / microbiology*
  • Legionella pneumophila / isolation & purification*
  • Legionella pneumophila / physiology
  • Temperature
  • Water Microbiology


  • Drinking Water

Grants and funding