Mesenchymal Stem Cells Improve Rheumatoid Arthritis Progression by Controlling Memory T Cell Response

Front Immunol. 2019 Apr 16;10:798. doi: 10.3389/fimmu.2019.00798. eCollection 2019.

Abstract

In the last years, mesenchymal stem cell (MSC)-based therapies have become an interesting therapeutic opportunity for the treatment of rheumatoid arthritis (RA) due to their capacity to potently modulate the immune response. RA is a chronic autoimmune inflammatory disorder with an incompletely understood etiology. However, it has been well described that peripheral tolerance defects and the subsequent abnormal infiltration and activation of diverse immune cells into the synovial membrane, are critical for RA development and progression. Moreover, the imbalance between the immune response of pro-inflammatory and anti-inflammatory cells, in particular between memory Th17 and memory regulatory T cells (Treg), respectively, is well admitted to be associated to RA immunopathogenesis. In this context, MSCs, which are able to alter the frequency and function of memory lymphocytes including Th17, follicular helper T (Tfh) cells and gamma delta (γδ) T cells while promoting Treg cell generation, have been proposed as a candidate of choice for RA cell therapy. Indeed, given the plasticity of memory CD4+ T cells, it is reasonable to think that MSCs will restore the balance between pro-inflammatory and anti-inflammatory memory T cells populations deregulated in RA leading to prompt their therapeutic function. In the present review, we will discuss the role of memory T cells implicated in RA pathogenesis and the beneficial effects exerted by MSCs on the phenotype and functions of these immune cells abnormally regulated in RA and how this regulation could impact RA progression.

Keywords: T cell; immunomodulatory; mesenchymal stem cells; plasticity; rheumatoid arthritis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Arthritis, Rheumatoid / immunology*
  • Arthritis, Rheumatoid / pathology
  • CD4-Positive T-Lymphocytes / immunology*
  • Disease Progression
  • Humans
  • Immunologic Memory / immunology*
  • Mesenchymal Stem Cell Transplantation
  • Mesenchymal Stem Cells / immunology*