Devosia naphthalenivorans sp. nov., isolated from East Pacific Ocean sediment

Int J Syst Evol Microbiol. 2019 Jul;69(7):1974-1979. doi: 10.1099/ijsem.0.003410. Epub 2019 May 2.

Abstract

A Gram-stain-negative bacterium, designated CM5-1T, was isolated from a sediment sample collected from the East Pacific Ocean. 16S rRNA gene sequence analysis revealed that strain CM5-1T belongs to the genus Devosia, with closely related type strains Devosia submarina KMM 9415T (98.6 %), Devosia psychrophilaCr7-05T (98.6 %) and Devosia psychrophilaE84T (98.2 %). Up-to-date bacterial core gene set analysis revealed that strain CM5-1T represents one independent lineage with D. submarina KMM 9415T. The average nucleotide identity values of CM5-1T with D. submarina KMM 9415T and D. psychrophila Cr7-05T are 80.1 and 77.9 %, respectively. In silico DNA-DNA hybridization values between strain CM5-1T and D. submarina KMM 9415T and D. psychrophila Cr7-05T are 23.8 and 21.9 %, respectively. Strain CM5-1T contains diphosphatidylglycerol, phosphatidylglycerol and glycolipid as major polar lipids. The sole isoprenoid quinone is ubiquinone-10, and C18 : 1ω7c and 11-methyl C18 : 1ω7c are the dominant cellular fatty acids. The G+C content of the genomic DNA is 61.4 mol%. Differential phylogenetic distinctiveness and chemotaxonomic differences, together with the phenotypic properties observed in this study, revealed that strain CM5-1T could be differentiated from closely related species. Therefore, we propose strain CM5-1T as a novel species of the genus Devosia, for which the name Devosia naphthalenivorans sp. nov. is suggested. The type strain is CM5-1T (=JCM32509T=CGMCC 1.13553T).

Keywords: 16S rRNA gene; Devosia; average nucleotide identity; in silico DNA–DNA hybridization; up-to-date bacterial core gene.

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • DNA, Bacterial / genetics
  • Fatty Acids / chemistry
  • Geologic Sediments / microbiology*
  • Glycolipids / chemistry
  • Hyphomicrobiaceae / classification*
  • Hyphomicrobiaceae / isolation & purification
  • Nucleic Acid Hybridization
  • Pacific Ocean
  • Phospholipids / chemistry
  • Phylogeny*
  • RNA, Ribosomal, 16S / genetics
  • Seawater / microbiology*
  • Sequence Analysis, DNA
  • Ubiquinone / chemistry

Substances

  • DNA, Bacterial
  • Fatty Acids
  • Glycolipids
  • Phospholipids
  • RNA, Ribosomal, 16S
  • Ubiquinone
  • Ubiquinone Q2