Hyperbaric oxygen treatment ameliorates gentamicin-induced nephrotoxicity and expression of kidney injury molecule 1 in the rat model

Undersea Hyperb Med. 2019 Mar-Apr-May;46(2):125-133.


In recent years hyperbaric oxygen (HBO2) therapy has been considered as an effective method for the treatment of gentamicin (GM)-induced renal toxicity. However, the findings related to the use of HBO2 for GM toxicity are limited and contradictory. The aim of this study is to investigate the protective role of HBO2 on GM-induced nephrotoxicity. For this purpose, Wistar albino rats (n=28) were randomly divided into four equal groups: C, HBO2, GM and GM+HBO2. GM (100 mg/kg, ip) and HBO2 were applied over seven days. On the eighth day blood and kidney tissue samples were harvested. The albumin, creatinine, and urea levels were determined from serum samples. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities, malondialdehyde (MDA), total antioxidant status (TAS) and total oxidant status (TOS) values were analyzed spectrophotometrically. The relative expression level of TNF-α, IL-1β and Kim-1 gene were determined by qRT-PCR assays; histopathologic investigation was completed in kidney tissue samples. Serum urea, albumin and creatinine levels significantly increased in the GM group compared to the GM+HBO2 group. For antioxidant parameters the GM+HBO2 group was not statistically different from the C group but was significantly different compared with the GM group. TNF-α, IL-1β and Kim-1 gene expression levels in the GM group were statistically increased compared to the GM+HBO2 group (p=0.015, p=0.024, p=0.004) respectively. Severe tubular necrosis, epithelial desquamation and mild peritubular hemorrhage were observed in the GM-administrated group, while HBO2 exposure ameliorated these alterations. In conclusion, HBO2 exposure may be defined as a potential method for the prevention of GM-induced renal toxicity.

Keywords: gentamicin; hyperbaric oxygen therapy; nephrotoxicity; rat.

MeSH terms

  • Albumins / analysis
  • Animals
  • Anti-Bacterial Agents / toxicity*
  • Biomarkers / metabolism
  • Cell Adhesion Molecules / metabolism*
  • Creatinine / blood
  • Gene Expression
  • Gentamicins / toxicity*
  • Glutathione / metabolism
  • Glutathione Peroxidase / metabolism
  • Hyperbaric Oxygenation*
  • Interleukin-1beta / metabolism
  • Kidney / drug effects*
  • Kidney / metabolism*
  • Kidney / pathology
  • Male
  • Malondialdehyde / metabolism
  • Random Allocation
  • Rats
  • Rats, Wistar
  • Serum Albumin / metabolism
  • Superoxide Dismutase / metabolism
  • Tumor Necrosis Factor-alpha / metabolism
  • Urea / blood


  • Albumins
  • Anti-Bacterial Agents
  • Biomarkers
  • Cell Adhesion Molecules
  • Gentamicins
  • Havcr1protein, rat
  • Interleukin-1beta
  • Serum Albumin
  • Tumor Necrosis Factor-alpha
  • Malondialdehyde
  • Urea
  • Creatinine
  • Glutathione Peroxidase
  • Superoxide Dismutase
  • Glutathione