Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 15;27(8):10705-10728.
doi: 10.1364/OE.27.010705.

Hydrofluoric acid-based etching effect on surface pit, crack, and scratch and laser damage site of fused silica optics

Free article

Hydrofluoric acid-based etching effect on surface pit, crack, and scratch and laser damage site of fused silica optics

Taixiang Liu et al. Opt Express. .
Free article

Abstract

In a large-scale, high-power laser facility, fused silica optics plays an irreplaceable role to transmit extremely intense lasers. However, the surface fractures, such as surface pit, crack, and scratch and laser damage site, of fused silica optics will shorten the lifetime of the optics and thus limit the output performance of the laser facility. In this work, besides experimental study, finite difference time domain (FDTD) simulation is performed to study hydrofluoric acid-based (HF-based) etching effect on the surface fractures. The effect of local surface curvature on etching rate is discussed and an explicit local-curvature-dependent etching model is proposed. Based on this model, the result from FDTD simulation qualitatively agrees very well with that of the experiment. It is demonstrated that the FDTD simulation is efficient to predict the morphological evolution of the surface fractures during etching. In addition, it is found that the surface fractures will be passivated and HF-based etching can greatly suppress the laser-damage growth of laser-induced damage to the surface site of fused silica optics.

PubMed Disclaimer

Similar articles

LinkOut - more resources