Induction of pluripotency in somatic cells with defined genetic factors has been successfully used to investigate the mechanisms of disease initiation and progression. Cellular reprogramming and oncogenic transformation share common features; both involve undergoing a dramatic change in cell identity, and immortalization is a key step for cancer progression that enhances reprogramming. However, there are very few examples of complete successful reprogramming of tumor cells. Here we address the effect of expressing an active oncogene, RAS, on the process of reprogramming and found that, while combined expression with reprogramming factors enhanced dedifferentiation, expression within the context of neoplastic transformation impaired reprogramming. RAS induces expression changes that promote loss of cell identity and acquisition of stemness in a paracrine manner and these changes result in reprogramming when combined with reprogramming factors. When cells carry cooperating oncogenic defects, RAS drives cells into an incompatible cellular fate of malignancy.
Keywords: Ras; cell plasticity; cell reprogramming; iPSC; oncogenes.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.