Bio-Inspired Flexible Fluoropolymer Film for All-Mode Light Extraction Enhancement

ACS Appl Mater Interfaces. 2019 May 29;11(21):19623-19630. doi: 10.1021/acsami.9b02942. Epub 2019 May 14.

Abstract

Enhancing the light extraction efficiency is a prevalent but vital challenge for most solid-state lighting technologies, especially for deep ultraviolet light-emitting diodes (DUV-LEDs). In this paper, inspired by the microstructure of the butterfly's eye, we propose and fabricate a flexible fluoropolymer film (FFP film) to tackle this issue for all-mode, full-wavelength light extraction enhancement for most solid-state lighting technologies compatibly. The experimental results demonstrate that compared with one mounted with a smooth FFP film, the light output power of DUV-LED is enhanced up to 26.7% by mounting the FFP film with 325 nm radius nanocones at a driving current of 200 mA. Importantly, thanks to the super-flexible feature of the FFP film, it can both cover the top surface and sidewalls of the DUV-LED chip, leading to the improvement of transverse electric and transverse magnetic mode light extraction by 20.5 and 21.8%, respectively. Finite element analysis (FEA) simulations of the electric field distribution of DUV-LEDs with the FFP film reveal the underlying physics. The present strategy is proposed from the view of the packaging level, which is cost-effective, able to be manufactured at a large scale, and compatible with the solid-state lighting technologies.

Keywords: TE/TM mode; deep ultraviolet light emitting diode; flexible fluoropolymer; light extraction efficiency; nanostructures.