Mobile Robot Path Planning Based on Ant Colony Algorithm With A* Heuristic Method
- PMID: 31057388
- PMCID: PMC6477093
- DOI: 10.3389/fnbot.2019.00015
Mobile Robot Path Planning Based on Ant Colony Algorithm With A* Heuristic Method
Abstract
This paper proposes an improved ant colony algorithm to achieve efficient searching capabilities of path planning in complicated maps for mobile robot. The improved ant colony algorithm uses the characteristics of A* algorithm and MAX-MIN Ant system. Firstly, the grid environment model is constructed. The evaluation function of A* algorithm and the bending suppression operator are introduced to improve the heuristic information of the Ant colony algorithm, which can accelerate the convergence speed and increase the smoothness of the global path. Secondly, the retraction mechanism is introduced to solve the deadlock problem. Then the MAX-MIN ant system is transformed into local diffusion pheromone and only the best solution from iteration trials can be added to pheromone update. And, strengths of the pheromone trails are effectively limited for avoiding premature convergence of search. This gives an effective improvement and high performance to ACO in complex tunnel, trough and baffle maps and gives a better result as compare to traditional versions of ACO. The simulation results show that the improved ant colony algorithm is more effective and faster.
Keywords: A* algorithm; ant colony algorithm; bending suppression; path planning; retraction mechanism.
Figures
Similar articles
-
LF-ACO: an effective formation path planning for multi-mobile robot.Math Biosci Eng. 2022 Jan;19(1):225-252. doi: 10.3934/mbe.2022012. Epub 2021 Nov 9. Math Biosci Eng. 2022. PMID: 34902989
-
Mobile Robot Path Planning Based on Time Taboo Ant Colony Optimization in Dynamic Environment.Front Neurorobot. 2021 Mar 1;15:642733. doi: 10.3389/fnbot.2021.642733. eCollection 2021. Front Neurorobot. 2021. PMID: 33732132 Free PMC article.
-
A novel parallel ant colony optimization algorithm for mobile robot path planning.Math Biosci Eng. 2024 Jan 18;21(2):2568-2586. doi: 10.3934/mbe.2024113. Math Biosci Eng. 2024. PMID: 38454696
-
A Comparative Performance Analysis of Computational Intelligence Techniques to Solve the Asymmetric Travelling Salesman Problem.Comput Intell Neurosci. 2021 Apr 17;2021:6625438. doi: 10.1155/2021/6625438. eCollection 2021. Comput Intell Neurosci. 2021. PMID: 33986793 Free PMC article. Review.
-
Automated selection of appropriate pheromone representations in ant colony optimization.Artif Life. 2005 Summer;11(3):269-91. doi: 10.1162/1064546054407149. Artif Life. 2005. PMID: 16053571 Review.
Cited by
-
Ant colony optimization-based adjusted PID parameters: a proposed method.PeerJ Comput Sci. 2023 Nov 16;9:e1660. doi: 10.7717/peerj-cs.1660. eCollection 2023. PeerJ Comput Sci. 2023. PMID: 38077540 Free PMC article.
-
A self-learning Monte Carlo tree search algorithm for robot path planning.Front Neurorobot. 2023 Jul 6;17:1039644. doi: 10.3389/fnbot.2023.1039644. eCollection 2023. Front Neurorobot. 2023. PMID: 37483541 Free PMC article.
-
Design and validation of a multi-objective waypoint planning algorithm for UAV spraying in orchards based on improved ant colony algorithm.Front Plant Sci. 2023 Feb 2;14:1101828. doi: 10.3389/fpls.2023.1101828. eCollection 2023. Front Plant Sci. 2023. PMID: 36818859 Free PMC article.
-
A Localization Method of Ant Colony Optimization in Nonuniform Space.Sensors (Basel). 2022 Sep 28;22(19):7389. doi: 10.3390/s22197389. Sensors (Basel). 2022. PMID: 36236488 Free PMC article.
-
A path planning approach for mobile robots using short and safe Q-learning.PLoS One. 2022 Sep 26;17(9):e0275100. doi: 10.1371/journal.pone.0275100. eCollection 2022. PLoS One. 2022. PMID: 36162062 Free PMC article.
References
-
- Arantes J. D., Arantes M. D., Toledo C. F., Júnior O. T., Williams B. C. (2017). Heuristic and genetic algorithm approaches for UAV path planning under critical situation. Int. J. Artificial Intelligence Tools 26, 1–30. 10.1142/S0218213017600089 - DOI
-
- Bakdi A., Hentout A., Boutami H., Maoudj A., Hachour O., Bouzouia B. (2016). Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robot. Autonomous Syst. 89, 95–109. 10.1016/j.robot.2016.12.008 - DOI
-
- Cetin O., Yilmaz G. (2014). Sigmoid limiting functions and potential field based autonomous air refueling path planning for UAVs. J. Intelligent Robot. Syst. 73, 797–810. 10.1007/s10846-013-9902-y - DOI
-
- Cheng C. T., Fallahi K., Leung H., Tse C. K. (2010). An AUVs path planner using genetic algorithms with a deterministic crossover operator. IEEE Int. Conference Robot. Automat. 2010, 2995–3000. 10.1109/ROBOT.2010.5509335 - DOI
-
- Das P. K., Behera H. S., Panigrahi B. K. (2016). A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. Swarm Evol. Comput. 28, 14–28. 10.1016/j.swevo.2015.10.011 - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources
