Analysis of Cardiac Chamber Development During Mouse Embryogenesis Using Whole Mount Epifluorescence

J Vis Exp. 2019 Apr 17;(146):10.3791/59413. doi: 10.3791/59413.


The goal of this protocol is to describe a method for the dissection of mouse embryos and visualization of embryonic mouse ventricular chambers during heart development using ventricular specific fluorescent reporter knock-in mice (MLC-2v-tdTomato mice). Heart development involves a linear heart tube formation, the heart tube looping, and four chamber septation. These complex processes are highly conserved in all vertebrates. The mouse embryonic heart has been widely used for heart developmental studies. However, due to their extremely small size, dissecting mouse embryonic hearts is technically challenging. In addition, visualization of cardiac chamber formation often needs in situ hybridization, beta-galactosidase staining using LacZ reporter mice, or immunostaining of sectioned embryonic hearts. Here, we describe how to dissect mouse embryonic hearts and directly visualize ventricular chamber formation of MLC-2v-tdTomato mice using whole mount epifluorescent microscopy. With this method, it is possible to directly examine heart tube formation and looping, and four chamber formation without further experimental manipulation of mouse embryos. Although the MLC-2v-tdTomato reporter knock-in mouse line is used in this protocol as an example, this protocol can be applied to other heart-specific fluorescent reporter transgenic mouse lines.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Animals
  • Embryo, Mammalian / metabolism
  • Embryonic Development*
  • Female
  • Fluorescence
  • Genotype
  • Heart / embryology*
  • In Situ Hybridization
  • Male
  • Mice
  • Mice, Transgenic