FGF-2 inhibits contractile properties of valvular interstitial cell myofibroblasts encapsulated in 3D MMP-degradable hydrogels

APL Bioeng. 2018 Dec 3;2(4):046104. doi: 10.1063/1.5042430. eCollection 2018 Dec.


Valvular interstitial cells (VICs) are responsible for the maintenance of the extracellular matrix in heart valve leaflets and, in response to injury, activate from a quiescent fibroblast to a wound healing myofibroblast phenotype. Under normal conditions, myofibroblast activation is transient, but the chronic presence of activated VICs can lead to valve diseases, such as fibrotic aortic valve stenosis, for which non-surgical treatments remain elusive. We monitored the porcine VIC response to exogenously delivered fibroblast growth factor 2 (FGF-2; 100 ng/ml), transforming growth factor beta 1 (TGF-β1; 5 ng/ml), or a combination of the two while cultured within 3D matrix metalloproteinase (MMP)-degradable 8-arm 40 kDa poly(ethylene glycol) hydrogels that mimic aspects of the aortic valve. Here, we aimed to investigate VIC myofibroblast activation and subsequent contraction or the reparative wound healing response. To this end, VIC morphology, proliferation, gene expression related to the myofibroblast phenotype [alpha smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF)] and matrix remodeling [collagens (COL1A1 and COL3) and MMP1], and contraction assays were used to quantify the cell response. Treatment with FGF-2 resulted in increased cellular proliferation while reducing the myofibroblast phenotype, as seen by decreased expression of CTGF and α-SMA, and reduced contraction relative to untreated control, suggesting that FGF-2 encourages a reparative phenotype, even in the presence of TGF-β1. TGF-β1 treatment predictably led to an increased proportion of VICs exhibiting the myofibroblast phenotype, indicated by the presence of α-SMA, increased gene expression indicative of matrix remodeling, and bulk contraction of the hydrogels. Functional contraction assays and biomechanical analyses were performed on VIC encapsulated hydrogels and porcine aortic valve tissue explants to validate these findings.