Tethered-liquid omniphobic surface coating reduces surface thrombogenicity, delays clot formation and decreases clot strength ex vivo

J Biomed Mater Res B Appl Biomater. 2020 Feb;108(2):496-502. doi: 10.1002/jbm.b.34406. Epub 2019 May 8.

Abstract

Hemocompatible materials for extracorporeal life support (ECLS) technology are investigated to mitigate thrombotic complications associated with this therapy. A promising solution is an omniphobic bilayer coating, tethered liquid perfluorocarbon (TLP), which utilizes an immobilized tether to anchor a mobile, liquid surface lubricant that prevents adhesion of blood components to the substrate. In this study, we investigated the effects of TLP on real-time clot formation using thromboelastography (TEG). TLP was applied to TEG cups, utilizing perfluorodecalin (PFD) or FluorLube63 as the liquid layer, and compared to uncoated cups. Human blood (n = 10) was added to cups; and TEG parameters (R, K, α-angle, MA, LY30, LY60) and adherent thrombus weight were assessed. TLP decreased clot amplification (α-angle), clot strength (MA), and adherent clot weight (p < .0001). These effects were greater with FluorLube63 versus PFD (α-angle p < .0001; MA p = .0019; clot weight p < .0001). Reaction time (R) was longer in TLP-coated cups versus control cups with liquid lubricant added (p = .0377). Percent fibrinolysis (LY30 and LY60) was greater in the TLP versus controls at LY30 (p < .0001), and in FluoroLube63 versus controls at LY60 (p = .0021). TLP significantly altered clot formation, exerting antithrombogenic effects. This reduction in surface thrombogenicity supports TLP as a candidate for improved biocompatibility of ECLS materials, pending further validation with exposure to shear stress.

Keywords: anticoagulation; antithrombogenic surface; biocompatibility; biomaterials.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Blood Cells
  • Cell Adhesion
  • Clot Retraction
  • Coated Materials, Biocompatible / chemistry*
  • Coated Materials, Biocompatible / metabolism
  • Extracorporeal Membrane Oxygenation
  • Fluorocarbons / chemistry
  • Fluorocarbons / metabolism
  • Humans
  • Lipid Bilayers / chemistry*
  • Lipid Bilayers / metabolism
  • Reaction Time
  • Surface Properties
  • Thrombelastography
  • Thrombosis / metabolism*

Substances

  • Coated Materials, Biocompatible
  • Fluorocarbons
  • Lipid Bilayers