Enhancement of anaerobic digestion effluent treatment by microalgae immobilization: Characterized by fluorescence excitation-emission matrix coupled with parallel factor analysis in the photobioreactor

Sci Total Environ. 2019 Aug 15:678:105-113. doi: 10.1016/j.scitotenv.2019.04.440. Epub 2019 Apr 30.

Abstract

The bacterial-microalgal consortium has been investigated to anaerobic digestion effluent (ADE) treatment in the photobioreactor (PBR). However, the high concentrations of nutrients reduced the ADE treatment efficiency and the transformation of organic pollutants in PBR was still unclear. In this study, two-sequencing batch PBRs were operated with suspended Microcystis aeruginosa (M. aeruginosa, SMA) and immobilized M. aeruginosa (IMA) to compare the ADE treatment performance. Fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) was conducted to identify organics degradations. The results showed that the proportion of living M. aeruginosa cell (86.4%) in PBR (IMA) was highly significant (p < 0.05) higher than that in PBR (SMA) (75.2%). This indicated immobilized microalgae beads enhanced the resistance to the high concentration of nutrients in PBR (IMA). EEM-PARAFAC analysis displayed the biodegradation order in the bacterial-microalgal consortium system was humic-like substances > tyrosine-like substances > tryptophan-like substances. The removals of humic-like matters (94.05 ± 0.92%) and tyrosine-like matters (91.13 ± 2.49%) in PBR (IMA) were significantly (p < 0.01) higher than those in PBR (SMA). Notably, the average removals of nutrients in PBR (IMA) were significantly (p < 0.05) higher than those in PBR (SMA). This result verified that microalgae immobilization benefitted nutrients removals with 93.05 ± 1.45% of NH4+-N and complete PO43--P removal in PBR (IMA). Moreover, the enrichment of functional genera Flavobacterium and Opitutus contributed to decreasing the organics loadings and strengthening the ADE treatment performance. Therefore, this study verified microalgae immobilization enhanced the actual ADE treatment. Additionally, fluorescent organic pollutants degradations were further evaluated by EEM-PARAFAC analysis in the bacterial-microalgal consortium.

Keywords: Anaerobic digestion effluent (ADE); Bacterial-microalgal consortium; EEM-PARAFAC analysis; M. aeruginosa immobilization; Photobioreactor (PBR).

MeSH terms

  • Anaerobiosis
  • Biodegradation, Environmental
  • Microalgae
  • Microcystis
  • Photobioreactors
  • Waste Disposal, Fluid / methods*