Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug;229:60-67.
doi: 10.1016/j.chemosphere.2019.04.174. Epub 2019 Apr 27.

BPA Activates EGFR and ERK1/2 Through PPARγ to Increase Expression of Steroidogenic Acute Regulatory Protein in Human Cumulus Granulosa Cells

Affiliations

BPA Activates EGFR and ERK1/2 Through PPARγ to Increase Expression of Steroidogenic Acute Regulatory Protein in Human Cumulus Granulosa Cells

Kristina Pogrmic-Majkic et al. Chemosphere. .

Abstract

Bisphenol A (BPA) negatively affects steroid production in human luteinized granulosa cells (GC). This study was designed to address two important questions: (1) whether BPA exerts the same disruptive effect in human cumulus granulosa cells (hCGC) and (2) to reveal the molecular mechanism underlying the BPA's action on steroidogenesis. We used cultured hCGC since these cells exert the properties of GC from early antral follicles. Results showed that BPA at 100 μM decreased estradiol level and CYP19A1 mRNA, but increased progesterone production, steroidogenic acute regulatory protein (STAR) and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression after 48 h. Shorter (6 h) exposure to BPA elevated PPARγ mRNA level in hCGC. Addition of ERK1/2 (U0126), EGFR (AG1478) and PPARγ (GW9662) inhibitors prevented the BPA-induced STAR and PPARγ mRNA expression. Western blot analysis showed that BPA induced a rapid EGFR and ERK1/2 activation. The BPA-induced EGFR phosphorylation was prevented by addition of the PPARγ inhibitor, whereas the BPA-induced ERK1/2 activation was prevented by addition of the EGFR or PPARγ inhibitor. These data show that BPA increases the progesterone and decreases the estradiol biosynthetic pathway in hCGC. Augmentation of the progesterone biosynthetic pathway is mediated through the PPARγ-dependent activation of EGFR and ERK1/2, leading to increased expression of STAR mRNA.

Keywords: BPA; EGFR; ERK1/2; Human cumulus granulosa cells; PPARγ; STAR; Steroidogenesis.

Similar articles

See all similar articles

Cited by 1 article

Feedback