Chronic obstructive pulmonary disease (COPD) is a common comorbidity of non-small cell lung cancer (NSCLC). COPD is characterized by systemic inflammation and lymphocyte dysfunction, mechanisms that are also known to accelerate progression of advanced (IIIB-IV) stage NSCLC. We aimed to find out whether COPD exerts an influence on tumor induced inflammatory and lymphoid responses and progression-free survival (PFS) after first-line treatment in advanced NSCLC. Patients suffering from NSCLC (n = 95), COPD (n = 54), NSCLC+COPD (n = 80) and healthy controls (n = 60) were included. PFS, neutrophil granulocyte and lymphocyte cell counts were recorded. Serum IFNγ, TNFα, VEGF concentrations were measured by using multiplex cytometric bead-based immunoassay. Prevalence of myeloid-derived suppressor cell populations (MDSC-s), and signs of T cell exhaustion were tested by using flow cytometry. Median PFS increased in the NSCLC+COPD group compared to NSCLC patients without COPD (7.4 vs 4.9 months, p < 0.01). NSCLC+COPD patients had 1.7 times (1.2-2.4) more likely to have longer PFS compared to NSCLC patients without COPD (Cox analysis, p < 0.01). Neutrophil cell counts, CRP, IFNγ and TNFα concentrations were all reduced in NSCLC+COPD (all p < 0.05 vs NSCLC). NSCLC+COPD was also associated with reduced serum IL-10 concentration and increased granzyme-B positive CD8 cell counts compared to NSCLC without COPD. The effects of VEGF and MDSC-s on systemic inflammation appeared to be blunted by COPD in patients suffering from advanced NSCLC. Concomitant COPD moderates tumor-induced inflammation and supports some effector lymphoid functions and thereby may be an independent positive predictive factor of longer PFS after first-line therapy in advanced NSCLC.
Keywords: Advanced NSCLC; COPD; CRP; Inflammation; Lymphopenia; MDSC; Neutrophils; T cell exhaustion; VEGF.