Viscous and Failure Mechanisms in Polymer Networks: A Theoretical Micromechanical Approach

Materials (Basel). 2019 May 14;12(10):1576. doi: 10.3390/ma12101576.


Polymeric materials typically present a complex response to mechanical actions; in fact, their behavior is often characterized by viscous time-dependent phenomena due to the network rearrangement and damage induced by chains' bond scission, chains sliding, chains uncoiling, etc. A simple yet reliable model-possibly formulated on the basis of few physically-based parameters-accounting for the main micro-scale micromechanisms taking place in such a class of materials is required to properly describe their response. In the present paper, we propose a theoretical micromechanical approach rooted in the network's chains statistics which allows us to account for the time-dependent response and for the chains failure of polymer networks through a micromechanics formulation. The model is up-scaled to the mesoscale level by integrating the main field quantities over the so-called 'chains configuration space'. After presenting the relevant theory, its reliability is verified through the analysis of some representative tests, and some final considerations are drawn.

Keywords: chains failure; chains network; damage; polymers; visco-elastic response.