NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

IEEE Trans Pattern Anal Mach Intell. 2020 Oct;42(10):2684-2701. doi: 10.1109/TPAMI.2019.2916873. Epub 2019 May 14.

Abstract

Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Benchmarking
  • Deep Learning*
  • Human Activities / classification*
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Pattern Recognition, Automated / methods*
  • Semantics
  • Video Recording