ICLabel: An automated electroencephalographic independent component classifier, dataset, and website

Neuroimage. 2019 Sep:198:181-197. doi: 10.1016/j.neuroimage.2019.05.026. Epub 2019 May 16.

Abstract

The electroencephalogram (EEG) provides a non-invasive, minimally restrictive, and relatively low-cost measure of mesoscale brain dynamics with high temporal resolution. Although signals recorded in parallel by multiple, near-adjacent EEG scalp electrode channels are highly-correlated and combine signals from many different sources, biological and non-biological, independent component analysis (ICA) has been shown to isolate the various source generator processes underlying those recordings. Independent components (IC) found by ICA decomposition can be manually inspected, selected, and interpreted, but doing so requires both time and practice as ICs have no order or intrinsic interpretations and therefore require further study of their properties. Alternatively, sufficiently-accurate automated IC classifiers can be used to classify ICs into broad source categories, speeding the analysis of EEG studies with many subjects and enabling the use of ICA decomposition in near-real-time applications. While many such classifiers have been proposed recently, this work presents the ICLabel project comprised of (1) the ICLabel dataset containing spatiotemporal measures for over 200,000 ICs from more than 6000 EEG recordings and matching component labels for over 6000 of those ICs, all using common average reference, (2) the ICLabel website for collecting crowdsourced IC labels and educating EEG researchers and practitioners about IC interpretation, and (3) the automated ICLabel classifier, freely available for MATLAB. The ICLabel classifier improves upon existing methods in two ways: by improving the accuracy of the computed label estimates and by enhancing its computational efficiency. The classifier outperforms or performs comparably to the previous best publicly available automated IC component classification method for all measured IC categories while computing those labels ten times faster than that classifier as shown by a systematic comparison against other publicly available EEG IC classifiers.

Keywords: Classification; Crowdsourcing; EEG; ICA.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Artifacts
  • Brain / physiology*
  • Data Interpretation, Statistical
  • Databases, Factual
  • Electroencephalography*
  • Humans
  • Signal Processing, Computer-Assisted*
  • Software