Characterization and analysis of a novel diguanylate cyclase PA0847 from Pseudomonas aeruginosa PAO1
- PMID: 31114257
- PMCID: PMC6497469
- DOI: 10.2147/IDR.S194462
Characterization and analysis of a novel diguanylate cyclase PA0847 from Pseudomonas aeruginosa PAO1
Abstract
Background: As a central signaling molecule, cyclic diguanylate (c-di-GMP) is found to regulate various bacterial phenotypes, especially those involved in pathogen infection and drug resistance. Noticeably, many microbes have up to dozens of proteins that are involved in c-di-GMP metabolism. This apparent redundancy and the relevant functional specificity have become the focus of research. While a number of these proteins have been identified and investigated, the functions of PA0847, a PAS and GGDEF domain-containing protein from Pseudomonas aeruginosa PAO1, remain unclear. Materials and methods: In the current study, microbiology, biochemistry and structural biology methods were applied to characterize the gene/protein of PA0847. Results: We showed that PA0847 affects bacterial motility but not biofilm formation. We recorded the phenotypic influences of amino acids and compounds, and found that PA0847 is involved in response to various environmental nutrients and factors, suggesting its possible role in sensing environmental cues. Both in-vitro and in-vivo studies showed that PA0847 is an active diguanylate cyclase (DGC), whose activity depends on the neighboring PAS domain. Interestingly, PA0847 demonstrates no significant product inhibition, though the key residues of two I-sites for c-di-GMP binding are conserved in its GGDEF domain. A local structural change imposed by an adjacent tyrosine residue was identified, which indicates the structural and functional diversities of the GGDEF family proteins. Conclusion: Our data provide evidence for understanding the signaling mechanism of the unique c-di-GMP metabolizing protein PA0847.
Keywords: GGDEF domain; Pseudomonas aeruginosa; c-di-GMP; diguanylate cyclase; structure.
Conflict of interest statement
The authors report no conflicts of interest in this work.
Figures
Similar articles
-
Diguanylate Cyclases and Phosphodiesterases Required for Basal-Level c-di-GMP in Pseudomonas aeruginosa as Revealed by Systematic Phylogenetic and Transcriptomic Analyses.Appl Environ Microbiol. 2019 Oct 16;85(21):e01194-19. doi: 10.1128/AEM.01194-19. Print 2019 Nov 1. Appl Environ Microbiol. 2019. PMID: 31444209 Free PMC article.
-
The structure and inhibition of a GGDEF diguanylate cyclase complexed with (c-di-GMP)(2) at the active site.Acta Crystallogr D Biol Crystallogr. 2011 Dec;67(Pt 12):997-1008. doi: 10.1107/S090744491104039X. Epub 2011 Nov 18. Acta Crystallogr D Biol Crystallogr. 2011. PMID: 22120736
-
Diguanylate Cyclase GdpX6 with c-di-GMP Binding Activity Involved in the Regulation of Virulence Expression in Xanthomonas oryzae pv. oryzae.Microorganisms. 2021 Feb 26;9(3):495. doi: 10.3390/microorganisms9030495. Microorganisms. 2021. PMID: 33652966 Free PMC article.
-
Screening for Diguanylate Cyclase (DGC) Inhibitors Mitigating Bacterial Biofilm Formation.Front Chem. 2020 Apr 21;8:264. doi: 10.3389/fchem.2020.00264. eCollection 2020. Front Chem. 2020. PMID: 32373581 Free PMC article. Review.
-
Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development.Biotechnol Adv. 2015 Jan-Feb;33(1):124-141. doi: 10.1016/j.biotechadv.2014.11.010. Epub 2014 Dec 10. Biotechnol Adv. 2015. PMID: 25499693 Review.
Cited by
-
A Library of Promoter-gfp Fusion Reporters for Studying Systematic Expression Pattern of Cyclic-di-GMP Metabolism-Related Genes in Pseudomonas aeruginosa.Appl Environ Microbiol. 2023 Feb 28;89(2):e0189122. doi: 10.1128/aem.01891-22. Epub 2023 Feb 6. Appl Environ Microbiol. 2023. PMID: 36744921 Free PMC article.
-
Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei.J Microbiol Biotechnol. 2023 Jan 28;33(1):15-27. doi: 10.4014/jmb.2207.07032. Epub 2022 Oct 17. J Microbiol Biotechnol. 2023. PMID: 36451302 Free PMC article. Review.
-
Controlling Biofilm Development Through Cyclic di-GMP Signaling.Adv Exp Med Biol. 2022;1386:69-94. doi: 10.1007/978-3-031-08491-1_3. Adv Exp Med Biol. 2022. PMID: 36258069 Free PMC article. Review.
-
Division of the role and physiological impact of multiple lysophosphatidic acid acyltransferase paralogs.BMC Microbiol. 2022 Oct 6;22(1):241. doi: 10.1186/s12866-022-02641-8. BMC Microbiol. 2022. PMID: 36203164 Free PMC article.
-
Phenotypic and integrated analysis of a comprehensive Pseudomonas aeruginosa PAO1 library of mutants lacking cyclic-di-GMP-related genes.Front Microbiol. 2022 Jul 22;13:949597. doi: 10.3389/fmicb.2022.949597. eCollection 2022. Front Microbiol. 2022. PMID: 35935233 Free PMC article.
References
LinkOut - more resources
Full Text Sources
Research Materials
