Exploitation of glycosylation in enveloped virus pathobiology
- PMID: 31121217
- PMCID: PMC6686077
- DOI: 10.1016/j.bbagen.2019.05.012
Exploitation of glycosylation in enveloped virus pathobiology
Abstract
Glycosylation is a ubiquitous post-translational modification responsible for a multitude of crucial biological roles. As obligate parasites, viruses exploit host-cell machinery to glycosylate their own proteins during replication. Viral envelope proteins from a variety of human pathogens including HIV-1, influenza virus, Lassa virus, SARS, Zika virus, dengue virus, and Ebola virus have evolved to be extensively glycosylated. These host-cell derived glycans facilitate diverse structural and functional roles during the viral life-cycle, ranging from immune evasion by glycan shielding to enhancement of immune cell infection. In this review, we highlight the imperative and auxiliary roles glycans play, and how specific oligosaccharide structures facilitate these functions during viral pathogenesis. We discuss the growing efforts to exploit viral glycobiology in the development of anti-viral vaccines and therapies.
Keywords: Glycan shielding; Glycoprotein; Glycosylation; Structure; Virus; Virus-host interactions.
Copyright © 2019 The Author(s). Published by Elsevier B.V. All rights reserved.
Figures
Similar articles
-
The Importance of Glycans of Viral and Host Proteins in Enveloped Virus Infection.Front Immunol. 2021 Apr 29;12:638573. doi: 10.3389/fimmu.2021.638573. eCollection 2021. Front Immunol. 2021. PMID: 33995356 Free PMC article. Review.
-
Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus.J Virol. 2015 Jul;89(14):7235-47. doi: 10.1128/JVI.00773-15. Epub 2015 May 6. J Virol. 2015. PMID: 25948743 Free PMC article.
-
Targeting host-derived glycans on enveloped viruses for antibody-based vaccine design.Curr Opin Virol. 2015 Apr;11:63-9. doi: 10.1016/j.coviro.2015.02.002. Epub 2015 Mar 6. Curr Opin Virol. 2015. PMID: 25747313 Free PMC article. Review.
-
Viruses and glycosylation: an overview.Methods Mol Biol. 2007;379:1-13. doi: 10.1007/978-1-59745-393-6_1. Methods Mol Biol. 2007. PMID: 17502667 Review.
-
Structural features of glycan recognition among viral pathogens.Curr Opin Struct Biol. 2017 Jun;44:211-218. doi: 10.1016/j.sbi.2017.05.007. Epub 2017 Jun 4. Curr Opin Struct Biol. 2017. PMID: 28591681 Free PMC article. Review.
Cited by
-
Low Levels of Natural Anti-α-N-Acetylgalactosamine (Tn) Antibodies Are Associated With COVID-19.Front Microbiol. 2021 Feb 11;12:641460. doi: 10.3389/fmicb.2021.641460. eCollection 2021. Front Microbiol. 2021. PMID: 33643275 Free PMC article.
-
SARS-CoV-2 spike glycosylation affects function and neutralization sensitivity.mBio. 2024 Feb 14;15(2):e0167223. doi: 10.1128/mbio.01672-23. Epub 2024 Jan 9. mBio. 2024. PMID: 38193662 Free PMC article.
-
Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor.Cell Host Microbe. 2020 Oct 7;28(4):586-601.e6. doi: 10.1016/j.chom.2020.08.004. Epub 2020 Aug 24. Cell Host Microbe. 2020. PMID: 32841605 Free PMC article.
-
Expanding horizons of iminosugars as broad-spectrum anti-virals: mechanism, efficacy and novel developments.Nat Prod Bioprospect. 2024 Sep 26;14(1):55. doi: 10.1007/s13659-024-00477-5. Nat Prod Bioprospect. 2024. PMID: 39325109 Free PMC article. Review.
-
Polymeric Nanoparticles for Antimicrobial Therapies: An Up-To-Date Overview.Polymers (Basel). 2021 Feb 27;13(5):724. doi: 10.3390/polym13050724. Polymers (Basel). 2021. PMID: 33673451 Free PMC article. Review.
References
-
- Cao L., Pauthner M., Andrabi R., Rantalainen K., Berndsen Z., Diedrich J.K., Menis S., Sok D., Bastidas R., Park S.-K.R., Delahunty C.M., He L., Guenaga J., Wyatt R.T., Schief W.R., Ward A.B., Yates J.R., Burton D.R., Paulson J.C. Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. Nat. Commun. 2018;9:3693. doi: 10.1038/s41467-018-06121-4. - DOI - PMC - PubMed
-
- Struwe W.B., Chertova E., Allen J.D., Seabright G.E., Watanabe Y., Harvey D.J., Medina-Ramirez M., Roser J.D., Smith R., Westcott D., Keele B.F., Bess J.W., Sanders R.W., Lifson J.D., Moore J.P., Crispin M. Site-specific glycosylation of virion-derived HIV-1 Env Is mimicked by a soluble trimeric immunogen. Cell Rep. 2018;24:1958–1966.e5. doi: 10.1016/j.celrep.2018.07.080. - DOI - PMC - PubMed
-
- Panico M., Bouché L., Binet D., O'Connor M.-J., Rahman D., Pang P.-C., Canis K., North S.J., Desrosiers R.C., Chertova E., Keele B.F., Bess J.W., Lifson J.D., Haslam S.M., Dell A., Morris H.R. Mapping the complete glycoproteome of virion-derived HIV-1 gp120 provides insights into broadly neutralizing antibody binding. Sci. Rep. 2016;6:32956. doi: 10.1038/srep32956. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
