Sleep restriction impairs maximal jump performance and joint coordination in elite athletes

J Sports Sci. 2019 Sep;37(17):1981-1988. doi: 10.1080/02640414.2019.1612504. Epub 2019 May 24.


The study objective was to examine the effects of three days of sleep restriction on maximal jump performance and joint coordination. Eleven elite cyclists obtained a one-week baseline of habitual sleep then restricted sleep to 4 h/night (SR) for three nights assessed through self-report and actigraphy. Pre and post-intervention measures were a box drop maximal vertical jump with 3D motion capture to assess physical performance and biomechanical changes, and Psychomotor Vigilance Task (PVT) assessed changes in response time. Associations between biomechanical, physical, and cognitive performance measures were assessed. Participants restricted reported sleep from 7.4 ± 0.5 h/night at baseline to 4.0 ± 0.2 h/night and actigraphy indicated 6.7 ± 0.7 to 3.7 ± 0.2 h/night. Following SR, jump height decreased (0.44 ± 0.09 vs. 0.42 ± 0.10 m, p = 0.02, g = 0.21). Hip sagittal/knee frontal (Δ15.5°, p = 0.04, g = 0.40) and hip frontal/knee frontal (Δ11.0°, p < 0.01, g = 0.44) plane coordination variability increased after SR. Hip sagittal/knee frontal plane coordination variability after SR was associated with increasingly slower PVT response time (r = 0.63, p = 0.03). These findings suggest SR for three days decreased maximal jump performance. SR increased joint coordination variability and was associated with greater impairment in response time. SR leads to deviations from preferred movement patterns, which may have implications for decrements in athlete performance and increased injury risk.

Keywords: Athlete; biomechanics; drop vertical jump; response time; sleep restriction.

MeSH terms

  • Actigraphy
  • Adult
  • Athletes
  • Athletic Performance / physiology*
  • Cross-Over Studies
  • Humans
  • Male
  • Psychomotor Performance*
  • Reaction Time*
  • Sleep*