Multi-parametric flow cytometry staining procedure for analyzing tumor-infiltrating immune cells following oncolytic herpes simplex virus immunotherapy in intracranial glioblastoma

J Biol Methods. 2019;6(2):e112. doi: 10.14440/jbm.2019.281. Epub 2019 Apr 4.

Abstract

Multi-color flow cytometry is a standard laboratory protocol, which is regularly used to analyze tumor-infiltrating immune cell subsets. Oncolytic herpes simplex virus has shown promise in treating various types of cancers, including deadly glioblastoma. Intracranial/intratumoral treatment with oncolytic herpes simplex virus expressing interleukin 12, i.e., immunovirotherapy results in induction of anti-tumor immune responses and tumor infiltration of a variety of immune cells. Multi-color flow cytometry is employed to characterize immune cells in the tumor microenvironment. Here, we describe a step-by-step 11-color flow cytometry protocol to stain tumor-infiltrating immune cells in glioblastoma following oncolytic herpes virotherapy. We also describe a method to identify HSV-1 glycoprotein-B-specific CD8+ T cells using fluorochrome-conjugated major histocompatibility complex multimers. The multimers carry major histocompatibility peptide complexes, which have the ability to interact and bind to T cell receptors present on the surface of T cells; allowing identification of T cells (e.g., CD8+) reactive to a desired antigen. This multimer staining can be used in conjunction with the multi-parametric flow cytometry staining. Brain tumor quadrants are harvested, minced, enzymatically digested, immune cells are isolated by positive selection, single cells are counted and blocked for Fc receptors, cells are incubated with dye and/or color-conjugated antibodies, and flow cytrometry is performed using a BD LSRII flow cytometer. The protocol described herein is also applicable to stain immune cells in other mouse and human tumors or in any desired tissues.

Keywords: flow cytometry; glioblastoma; immune cells; immunovirotherapy; oncolytic herpes simplex virus.