Neuroprotective benefits of grape seed and skin extract in a mouse model of Parkinson's disease

Nutr Neurosci. 2021 Mar;24(3):197-211. doi: 10.1080/1028415X.2019.1616435. Epub 2019 May 25.

Abstract

Parkinson's disease is a neurodegenerative disorder characterized by the progressive loss of midbrain dopaminergic (mDA) neurons in the substantia nigra pars compacta, and it involves oxidative stress. Our goal was to evaluate the neuroprotective effect of Vitis vinifera red grape seed and skin extract (GSSE) in a model of Parkinson's disease. GSSE is very rich in phenolic compounds, such as flavonoids, anthocyanins, catechins and stilbenes, which are present in the pulp, seeds, and leaves of the fruit. GSSE is known for its antioxidant properties and has shown beneficial effects against oxidative injury in different organs, such as the kidneys, liver, heart and brain. In this study, we revealed the neuroprotective effect of GSSE on midbrain dopaminergic neurons both in vitro and in vivo. We used the neurotoxin 6-hydroxydopamine (6-OHDA), which induces oxidative damage and mimics the degeneration of dopaminergic neurons observed in Parkinson's disease. We found that GSSE was effective in protecting dopamine neurons from 6-OHDA toxicity by reducing apoptosis, the level of reactive oxygen species (ROS) and inflammation. Furthermore, we found that GSSE treatment efficiently protected against neuronal loss and improved motor function in an in vivo 6-OHDA model of Parkinson's disease (PD). Altogether, our results show that GSSE acts at multiple levels to protect dopamine neurons from degeneration in a model of PD.

Keywords: GSSE; Parkinson’s disease; dopamine neurons; neuroprotection; polyphenols.