Boosting Cancer Therapy with Organelle-Targeted Nanomaterials
- PMID: 31136142
- DOI: 10.1021/acsami.9b01370
Boosting Cancer Therapy with Organelle-Targeted Nanomaterials
Abstract
The ultimate goal of cancer therapy is to eliminate malignant tumors while causing no damage to normal tissues. In the past decades, numerous nanoagents have been employed for cancer treatment because of their unique properties over traditional molecular drugs. However, lack of selectivity and unwanted therapeutic outcomes have severely limited the therapeutic index of traditional nanodrugs. Recently, a series of nanomaterials that can accumulate in specific organelles (nucleus, mitochondrion, endoplasmic reticulum, lysosome, Golgi apparatus) within cancer cells have received increasing interest. These rationally designed nanoagents can either directly destroy the subcellular structures or effectively deliver drugs into the proper targets, which can further activate certain cell death pathways, enabling them to boost the therapeutic efficiency, lower drug dosage, reduce side effects, avoid multidrug resistance, and prevent recurrence. In this Review, the design principles, targeting strategies, therapeutic mechanisms, current challenges, and potential future directions of organelle-targeted nanomaterials will be introduced.
Keywords: Golgi apparatus; cancer therapy; endoplasmic reticulum; lysosome; mitochondrion; nanodrugs; nucleus; organelle-targeted.
Similar articles
-
Subcellular Performance of Nanoparticles in Cancer Therapy.Int J Nanomedicine. 2020 Feb 5;15:675-704. doi: 10.2147/IJN.S226186. eCollection 2020. Int J Nanomedicine. 2020. PMID: 32103936 Free PMC article. Review.
-
Nanodrugs Detonate Lysosome Bombs.Front Pharmacol. 2022 May 17;13:909504. doi: 10.3389/fphar.2022.909504. eCollection 2022. Front Pharmacol. 2022. PMID: 35656308 Free PMC article. Review.
-
In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy.Adv Mater. 2023 May;35(21):e2209529. doi: 10.1002/adma.202209529. Epub 2023 Mar 28. Adv Mater. 2023. PMID: 36445169 Review.
-
Future of nanotherapeutics: Targeting the cellular sub-organelles.Biomaterials. 2016 Aug;97:10-21. doi: 10.1016/j.biomaterials.2016.04.026. Epub 2016 Apr 26. Biomaterials. 2016. PMID: 27155363 Review.
-
Nucleus-Targeting Phototherapy Nanodrugs for High-Effective Anti-Cancer Treatment.Front Pharmacol. 2022 May 11;13:905375. doi: 10.3389/fphar.2022.905375. eCollection 2022. Front Pharmacol. 2022. PMID: 35645841 Free PMC article. Review.
Cited by
-
POSS Engineering of Multifunctional Nanoplatforms for Chemo-Mild Photothermal Synergistic Therapy.Int J Mol Sci. 2024 Jan 13;25(2):1012. doi: 10.3390/ijms25021012. Int J Mol Sci. 2024. PMID: 38256086 Free PMC article.
-
Unlocking the potential of platinum drugs: organelle-targeted small-molecule platinum complexes for improved anticancer performance.RSC Chem Biol. 2023 Oct 3;4(12):1003-1013. doi: 10.1039/d3cb00087g. eCollection 2023 Nov 29. RSC Chem Biol. 2023. PMID: 38033725 Free PMC article. Review.
-
Nanomedicine in cancer therapy.Signal Transduct Target Ther. 2023 Aug 7;8(1):293. doi: 10.1038/s41392-023-01536-y. Signal Transduct Target Ther. 2023. PMID: 37544972 Free PMC article. Review.
-
Nanotechnological strategies to increase the oxygen content of the tumor.Front Pharmacol. 2023 Mar 9;14:1140362. doi: 10.3389/fphar.2023.1140362. eCollection 2023. Front Pharmacol. 2023. PMID: 36969866 Free PMC article. Review.
-
Aggregation-Induced Emission Luminogens for Enhanced Photodynamic Therapy: From Organelle Targeting to Tumor Targeting.Biosensors (Basel). 2022 Nov 16;12(11):1027. doi: 10.3390/bios12111027. Biosensors (Basel). 2022. PMID: 36421144 Free PMC article. Review.
LinkOut - more resources
Full Text Sources
Miscellaneous
