Diversification and collapse of a telomere elongation mechanism
- PMID: 31138619
- PMCID: PMC6581046
- DOI: 10.1101/gr.245001.118
Diversification and collapse of a telomere elongation mechanism
Abstract
In most eukaryotes, telomerase counteracts chromosome erosion by adding repetitive sequence to terminal ends. Drosophila melanogaster instead relies on specialized retrotransposons that insert exclusively at telomeres. This exchange of goods between host and mobile element-wherein the mobile element provides an essential genome service and the host provides a hospitable niche for mobile element propagation-has been called a "genomic symbiosis." However, these telomere-specialized, jockey family retrotransposons may actually evolve to "selfishly" overreplicate in the genomes that they ostensibly serve. Under this model, we expect rapid diversification of telomere-specialized retrotransposon lineages and, possibly, the breakdown of this ostensibly symbiotic relationship. Here we report data consistent with both predictions. Searching the raw reads of the 15-Myr-old melanogaster species group, we generated de novo jockey retrotransposon consensus sequences and used phylogenetic tree-building to delineate four distinct telomere-associated lineages. Recurrent gains, losses, and replacements account for this retrotransposon lineage diversity. In Drosophila biarmipes, telomere-specialized elements have disappeared completely. De novo assembly of long reads and cytogenetics confirmed this species-specific collapse of retrotransposon-dependent telomere elongation. Instead, telomere-restricted satellite DNA and DNA transposon fragments occupy its terminal ends. We infer that D. biarmipes relies instead on a recombination-based mechanism conserved from yeast to flies to humans. Telomeric retrotransposon diversification and disappearance suggest that persistently "selfish" machinery shapes telomere elongation across Drosophila rather than completely domesticated, symbiotic mobile elements.
© 2019 Saint-Leandre et al.; Published by Cold Spring Harbor Laboratory Press.
Figures
Similar articles
-
Telomere-Specialized Retroelements in Drosophila: Adaptive Symbionts of the Genome, Neutral, or in Conflict?Bioessays. 2020 Jan;42(1):e1900154. doi: 10.1002/bies.201900154. Epub 2019 Dec 9. Bioessays. 2020. PMID: 31815300 Review.
-
Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase.Genome Res. 2007 Dec;17(12):1909-18. doi: 10.1101/gr.6365107. Epub 2007 Nov 7. Genome Res. 2007. PMID: 17989257 Free PMC article.
-
Telomere maintenance in Drosophila: rapid transposon evolution at chromosome ends.Cell Cycle. 2008 Jul 15;7(14):2134-8. doi: 10.4161/cc.7.14.6275. Epub 2008 May 12. Cell Cycle. 2008. PMID: 18635962 Review.
-
Transposon control mechanisms in telomere biology.Curr Opin Genet Dev. 2018 Apr;49:56-62. doi: 10.1016/j.gde.2018.03.002. Epub 2018 Mar 20. Curr Opin Genet Dev. 2018. PMID: 29571043 Review.
-
TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres.Mol Biol Evol. 2004 Sep;21(9):1620-4. doi: 10.1093/molbev/msh180. Epub 2004 Jun 2. Mol Biol Evol. 2004. PMID: 15175413
Cited by
-
Mod(mdg4) variants repress telomeric retrotransposon HeT-A by blocking subtelomeric enhancers.Nucleic Acids Res. 2022 Nov 11;50(20):11580-11599. doi: 10.1093/nar/gkac1034. Nucleic Acids Res. 2022. PMID: 36373634 Free PMC article.
-
Altered Localization of Hybrid Incompatibility Proteins in Drosophila.Mol Biol Evol. 2019 Aug 1;36(8):1783-1792. doi: 10.1093/molbev/msz105. Mol Biol Evol. 2019. PMID: 31038678 Free PMC article.
-
Recent Acquisition of Functional m6A RNA Demethylase Domain in Orchid Ty3/Gypsy Elements.Front Plant Sci. 2022 Jul 4;13:939843. doi: 10.3389/fpls.2022.939843. eCollection 2022. Front Plant Sci. 2022. PMID: 35860540 Free PMC article.
-
Telomeric DNA sequences in beetle taxa vary with species richness.Sci Rep. 2021 Jun 25;11(1):13319. doi: 10.1038/s41598-021-92705-y. Sci Rep. 2021. PMID: 34172809 Free PMC article.
-
Functional Diversification of Chromatin on Rapid Evolutionary Timescales.Annu Rev Genet. 2021 Nov 23;55:401-425. doi: 10.1146/annurev-genet-071719-020301. Annu Rev Genet. 2021. PMID: 34813351 Free PMC article. Review.
References
-
- Agudo M, Losada A, Abad JP, Pimpinelli S, Ripoll P, Villasante A. 1999. Centromeres from telomeres? The centromeric region of the Y chromosome of Drosophila melanogaster contains a tandem array of telomeric HeT-A- and TART-related sequences. Nucleic Acids Res 27: 3318–3324. 10.1093/nar/27.16.3318 - DOI - PMC - PubMed
-
- Beliveau BJ, Joyce EF, Apostolopoulos N, Yilmaz F, Fonseka CY, McCole RB, Chang Y, Li JB, Senaratne TN, Williams BR, et al. 2012. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci 109: 21301–21306. 10.1073/pnas.1213818110 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases