The lung lineage master regulator gene, Thyroid Transcription Factor-1 (TTF-1, also known as NKX2-1), is used as a marker by pathologists to identify lung adenocarcinomas since TTF-1 is expressed in 60 ~ 70% of lung ADs. Much research has been conducted to investigate roles of TTF-1 in lung cancer biology. But, how it modulates cellular chemosensitivity remains poorly characterized. Our study shows that TTF-1 sensitizes the KRAS-mutated A549 and NCI-H460 lung cancer cells to cisplatin, a common chemotherapy used to treat lung cancer. This chemosensitization activity does not appear to be mediated by a TTF-1-imposed alteration on nucleotide excision repair. Mechanistically, TTF-1 induced a reduction in p-AKT (S473), which in turn activated glycogen synthase kinase 3 (GSK3) and reduced β-catenin. Intriguingly, in the EGFR-mutated NCI-H1975 and HCC827 cells, TTF-1 desensitized these cells to cisplatin; concomitantly, TTF-1 conferred an increase in p-AKT. Finally, the conditioned media of TTF-1-transefected cells sensitized TTF-1- cells to cisplatin, implicating that the TTF-1-driven chemosensitization activity may be dually pronged in both intracellular and extracellular compartments. In short, this study highlights the enigmatic activities of TTF-1 in lung cancer, and calls for future research to optimally manage chemotherapy of patients with TTF-1+ lung ADs.