Low-keV virtual monoenergetic imaging reconstructions of excretory phase spectral dual-energy CT in patients with urothelial carcinoma: A feasibility study

Eur J Radiol. 2019 Jul:116:135-143. doi: 10.1016/j.ejrad.2019.05.003. Epub 2019 May 6.

Abstract

Objectives: To compare objective and subjective image quality between low keV virtual monoenergetic images (VMI) of the excretory phase and conventional venous phase images derived from spectral dual-energy CT (DECT) in the assessment of urothelial carcinoma.

Methods: 26 consecutive patients with histologically confirmed urothelial carcinoma who received clinically indicated venous- and excretory phase abdominal CT scans were included retrospectively. Attenuation, image noise as well as signal- and contrast-to-noise-ratio (SNR, CNR) in venous and excretory phase CT and excretory phase VMI from 40 to 70 keV were obtained from ROI-based measurements in the following regions: urothelial carcinoma, liver, pancreas, renal cortex, subcutaneous fat, renal vein/artery, portal vein, urinary bladder wall, lymph nodes, prostate/uterus. Subjective vessel contrast and delineation of primary tumor manifestations and distant metastases were rated on 5-point Likert scales.

Results: In comparison to venous phase CT, attenuation and SNR in excretory phase VMI40keV were higher (p < 0.001), except for liver parenchyma, where they were comparable (p = 0.07 and p = 0.17, respectively). Regarding image noise, no significant difference was found between venous phase CT and excretory phase VMI40keV (p-range: 0.08-1.00), except for liver, portal vein and renal artery, where it was lower in VMI40keV (p < 0.05). CNR of urothelial carcinoma to circumjacent bladder wall was significantly higher in excretory phase VMI40keV compared to venous phase CT. Subjective vessel contrast and delineation of primary tumor and distant metastases received equivalent or higher Likert scores in excretory phase VMI40keV than in venous phase CT.

Conclusion: This feasibility study indicates that in the assessment of urothelial carcinoma, virtual monoenergetic excretory phase images at 40 keV acquired with spectral DECT could be feasible to maintain subjective and objective image quality as provided by conventional venous phase images. Still, equivalence with regards to metastatic lesion detection requires further investigation before employing this technique in a potential signal-scan, single-bolus approach.

Keywords: Contrast media; Dual energy CT; Excretory phase; Spectral CT; Urothelial carcinoma; Virtual monoenergetic images.

MeSH terms

  • Feasibility Studies
  • Female
  • Humans
  • Male
  • Middle Aged
  • Radiographic Image Interpretation, Computer-Assisted / methods*
  • Radiography, Dual-Energy Scanned Projection / methods
  • Retrospective Studies
  • Signal-To-Noise Ratio
  • Tomography, X-Ray Computed / methods*
  • Urologic Neoplasms / diagnostic imaging*
  • Urothelium