Ultraviolet luminescence enhancement of planar wide bandgap semiconductor film by a hybrid microsphere cavity/dual metallic nanoparticles sandwich structure

Opt Express. 2019 May 27;27(11):15399-15412. doi: 10.1364/OE.27.015399.

Abstract

Here we report a novel hybrid structure composing of microsphere array (MA), Al nanoparticles (Al-NPs), ZnO thin film (luminescence layer), Au nanoparticles (Au-NPs), and substrate (sapphire) for ultraviolet (UV) luminescence enhancement of planar wide bandgap semiconductor film. The plasmonic sandwich structure of Al-NPs/ZnO/Au-NPs boosts the hot electron state density in the conduction band by electron trapping from deep-defect level of ZnO and localized surface plasmon resonances (LSPRs) coupling around dual metallic NPs, enhancing UV emission and suppressing visible emission efficiently. The dielectric microsphere array capping on the plasmonic sandwich structure further increases UV emission intensity via photonic nanojets, optical whispering-gallery modes (WGMs), and directional antenna effect, by which the interaction between photon and exciton is strengthened. The contribution of microsphere cavity coupling with LSPRs to UV luminescence enhancement is therefore revealed. The maximum enhancement ratio of up to two orders of magnitude (~250-fold) is achieved by the optimized 5.06-μm-diameter-MA/Al-NPs/ZnO/Au-NPs/sapphire structure and the UV emission is highly directional with a divergent angle of ~5°. The present work provides a simple and easily-prepared structure incorporating optical WGMs and LSPRs to manipulate UV luminescence of planar wide-bandgap semiconductors for potential optoelectronic applications.