Four Social Brain Regions, Their Dysfunctions, and Sequelae, Extensively Explain Autism Spectrum Disorder Symptomatology

Brain Sci. 2019 Jun 4;9(6):130. doi: 10.3390/brainsci9060130.

Abstract

Autism spectrum disorder (ASD) is a challenging neurodevelopmental disorder with symptoms in social, language, sensory, motor, cognitive, emotional, repetitive behavior, and self-sufficient living domains. The important research question examined is the elucidation of the pathogenic neurocircuitry that underlies ASD symptomatology in all its richness and heterogeneity. The presented model builds on earlier social brain research, and hypothesizes that four social brain regions largely drive ASD symptomatology: amygdala, orbitofrontal cortex (OFC), temporoparietal cortex (TPC), and insula. The amygdala's contributions to ASD largely derive from its major involvement in fine-grained intangible knowledge representations and high-level guidance of gaze. In addition, disrupted brain regions can drive disturbance of strongly interconnected brain regions to produce further symptoms. These and related effects are proposed to underlie abnormalities of the visual cortex, inferior frontal gyrus (IFG), caudate nucleus, and hippocampus as well as associated symptoms. The model is supported by neuroimaging, neuropsychological, neuroanatomical, cellular, physiological, and behavioral evidence. Collectively, the model proposes a novel, parsimonious, and empirically testable account of the pathogenic neurocircuitry of ASD, an extensive account of its symptomatology, a novel physiological biomarker with potential for earlier diagnosis, and novel experiments to further elucidate the mechanisms of brain abnormalities and symptomatology in ASD.

Keywords: amygdala; autism; biomarker; insula; intangible knowledge; orbitofrontal cortex; paradoxical functional facilitation; pathogenic mechanisms; temporoparietal cortex.