Random pulses contribute to stochastic resonance in neuron models, whereas common random pulses cause stochastic-synchronized excitation in uncoupled neuron models. We studied concurrent phenomena contributing to phase synchronization and stochastic resonance following induction by a weak common random pulse in uncoupled non-identical Hodgkin-Huxley type neuron models. The common random pulse was selected from a gamma distribution and the degree of synchronization depended on the corresponding shape parameter. Specifically, a low shape parameter of the weak random pulse induced well-synchronized spiking in uncoupled neuron models, whereas a high shape parameter of the weak random pulse or a weak periodic pulse caused low degrees of synchronization. These were improved by concurrent inputs of periodic and random pulses with high shape parameters. Finally, the output pulse was synchronized with the periodic pulse, and the common random pulse revealed periodic responses in the present neuron models.
Keywords: Conductance-based model; Neural networks; Noise-induced synchronization; Spiking neurons; Stochastic resonance.