The multiscale top-hat tensor enables specific enhancement of curvilinear structures in 2D and 3D images

Methods. 2020 Feb 15:173:3-15. doi: 10.1016/j.ymeth.2019.05.025. Epub 2019 Jun 7.

Abstract

Quantification and modelling of curvilinear structures in 2D and 3D images is a common challenge in a wide range of biomedical applications. Image enhancement is a crucial pre-processing step for curvilinear structure quantification. Many of the existing state-of-the-art enhancement approaches still suffer from contrast variations and noise. In this paper, we propose to address such problems via the use of a multiscale image processing approach, called Multiscale Top-Hat Tensor (MTHT). MTHT produces a better quality enhancement of curvilinear structures in low contrast and noisy images compared with other approaches in a range of 2D and 3D biomedical images. The proposed approach combines multiscale morphological filtering with a local tensor representation of curvilinear structure. The MTHT approach is validated on 2D and 3D synthetic and real images, and is also compared to the state-of-the-art curvilinear structure enhancement approaches. The obtained results demonstrate that the proposed approach provides high-quality curvilinear structure enhancement, allowing high accuracy segmentation and quantification in a wide range of 2D and 3D image datasets.

Keywords: Curvilinear structures; Image enhancement; Mathematical morphology; Neuriteness; Tensor representation; Top-hat; Vesselness.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Humans
  • Image Enhancement / methods*
  • Image Processing, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*