Oxygen-Glucose Deprivation/Reoxygenation Induces Human Brain Microvascular Endothelial Cell Hyperpermeability Via VE-Cadherin Internalization: Roles of RhoA/ROCK2

J Mol Neurosci. 2019 Sep;69(1):49-59. doi: 10.1007/s12031-019-01326-8. Epub 2019 Jun 11.

Abstract

The destruction of the blood-brain barrier (BBB) contributes to a spectrum of neurological diseases such as stroke, and the hyperpermeability of endothelial cells is one of the characters of stroke, which is possibly exacerbated after reperfusion. However, the underlying mechanisms involving hyperpermeability after reperfusion between the endothelial cells remain poorly understood. Therefore, in the present study, the human microvascular endothelial cells (HBMECs) were exposed to oxygen-glucose deprivation/reperfusion (OGD/R) to mimic ischemic stroke condition in vitro with the aim to investigate the potential mechanisms induced by OGD/R. The permeability of cultured HBMECs was measured using FITC-labeled dextran in a Transwell system and transendothelial electrical resistance (TEER), while the RhoA activity was detected by pull-down assay. In addition, the phosphorylation of MYPT1, which reflects the activation of ROCK and the internalization of VE-cadherin, was detected by Western blot. It showed that OGD/R treatment significantly increased the permeability of HBMEC monolayers and facilitated the internalization of VE-cadherin in HBMEC monolayers. Pull-down assay showed that RhoA activation was obviously enhanced after OGD/R treatment, while RhoA and ROCK inhibitor significantly reversed OGD/R-induced HBMEC monolayers hyperpermeability and the internalization of VE-cadherin. Meanwhile, the knockdown assay showed that RhoA small interfering RNA (siRNA) led to similar effects. The inactivation of the downstream effector protein ROCK was also examined. Intriguingly, ROCK2 rather than ROCK1 exerted its adverse effects on HBMEC monolayer integrity, since ROCK2 knockdown markedly reverses the injury of OGD/R in HBMEC monolayers. In conclusion, the present study provides evidence that OGD/R may induce HBMEC monolayer hyperpermeability via RhoA/ROCK2-mediated VE-cadherin internalization, which may provide an impetus for the development of therapeutics targeting BBB damage in ischemic stroke.

Keywords: HBMECs permeability; Oxygen-glucose deprivation and reoxygenation; RhoA/ROCK signaling pathway; VE-cadherin.

MeSH terms

  • Brain / blood supply
  • Cadherins / metabolism*
  • Cell Hypoxia
  • Cell Membrane / metabolism*
  • Cell Membrane Permeability*
  • Cells, Cultured
  • Endocytosis
  • Endothelial Cells / metabolism*
  • Endothelium, Vascular / cytology
  • Glucose / deficiency*
  • Humans
  • Microvessels / cytology
  • Oxygen / metabolism*
  • rho-Associated Kinases / metabolism
  • rhoA GTP-Binding Protein / metabolism

Substances

  • Cadherins
  • RHOA protein, human
  • ROCK2 protein, human
  • rho-Associated Kinases
  • rhoA GTP-Binding Protein
  • Glucose
  • Oxygen