Artificial intelligence and radiomics in pulmonary nodule management: current status and future applications

Clin Radiol. 2020 Jan;75(1):13-19. doi: 10.1016/j.crad.2019.04.017. Epub 2019 Jun 12.

Abstract

Artificial intelligence (AI) has been present in some guise within the field of radiology for over 50 years. The first studies investigating computer-aided diagnosis in thoracic radiology date back to the 1960s, and in the subsequent years, the main application of these techniques has been the detection and classification of pulmonary nodules. In addition, there have been other less intensely researched applications, such as the diagnosis of interstitial lung disease, chronic obstructive pulmonary disease, and the detection of pulmonary emboli. Despite extensive literature on the use of convolutional neural networks in thoracic imaging over the last few decades, we are yet to see these systems in use in clinical practice. The article reviews current state-of-the-art applications of AI and in detection, classification, and follow-up of pulmonary nodules and how deep-learning techniques might influence these going forward. Finally, we postulate the impact of these advancements on the role of radiologists and the importance of radiologists in the development and evaluation of these techniques.

Publication types

  • Review

MeSH terms

  • Artificial Intelligence*
  • Deep Learning
  • Diagnosis, Computer-Assisted
  • Forecasting
  • Humans
  • Lung Neoplasms / diagnostic imaging*
  • Multiple Pulmonary Nodules / diagnostic imaging*
  • Neural Networks, Computer
  • Radiographic Image Interpretation, Computer-Assisted
  • Solitary Pulmonary Nodule / diagnostic imaging*
  • Tomography, X-Ray Computed*