Spatiotemporal ontogeny of brain wiring

Sci Adv. 2019 Jun 12;5(6):eaav9694. doi: 10.1126/sciadv.aav9694. eCollection 2019 Jun.

Abstract

The wiring of vertebrate and invertebrate brains provides the anatomical skeleton for cognition and behavior. Connections among brain regions are characterized by heterogeneous strength that is parsimoniously described by the wiring cost and homophily principles. Moreover, brains exhibit a characteristic global network topology, including modules and hubs. However, the mechanisms resulting in the observed interregional wiring principles and network topology of brains are unknown. Here, with the aid of computational modeling, we demonstrate that a mechanism based on heterochronous and spatially ordered neurodevelopmental gradients, without the involvement of activity-dependent plasticity or axonal guidance cues, can reconstruct a large part of the wiring principles (on average, 83%) and global network topology (on average, 80%) of diverse adult brain connectomes, including fly and human connectomes. In sum, space and time are key components of a parsimonious, plausible neurodevelopmental mechanism of brain wiring with a potential universal scope, encompassing vertebrate and invertebrate brains.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / anatomy & histology
  • Brain / physiology*
  • Cognition / physiology
  • Connectome / statistics & numerical data
  • Drosophila melanogaster / anatomy & histology
  • Drosophila melanogaster / physiology*
  • Humans
  • Macaca / anatomy & histology
  • Macaca / physiology*
  • Mice
  • Models, Neurological*
  • Nerve Net / physiology*
  • Neural Pathways / anatomy & histology
  • Neural Pathways / physiology*
  • Spatio-Temporal Analysis
  • Species Specificity