Orchestration of Hippocampal Information Encoding by the Piriform Cortex
- PMID: 31220213
- PMCID: PMC7029697
- DOI: 10.1093/cercor/bhz077
Orchestration of Hippocampal Information Encoding by the Piriform Cortex
Abstract
The hippocampus utilizes olfactospatial information to encode sensory experience by means of synaptic plasticity. Odor exposure is also a potent impetus for hippocampus-dependent memory retrieval. Here, we explored to what extent the piriform cortex directly impacts upon hippocampal information processing and storage. In behaving rats, test-pulse stimulation of the anterior piriform cortex (aPC) evoked field potentials in the dentate gyrus (DG). Patterned stimulation of the aPC triggered both long-term potentiation (LTP > 24 h) and short-term depression (STD), in a frequency-dependent manner. Dual stimulation of the aPC and perforant path demonstrated subordination of the aPC response, which was nonetheless completely distinct in profile to perforant path-induced DG plasticity. Correspondingly, patterned aPC stimulation resulted in somatic immediate early gene expression in the DG that did not overlap with responses elicited by perforant path stimulation. Our results support that the piriform cortex engages in specific control of hippocampal information processing and encoding. This process may underlie the unique role of olfactory cues in information encoding and retrieval of hippocampus-dependent associative memories.
Keywords: dentate gyrus; hippocampus; in vivo; olfactory system; rodent; synaptic plasticity.
© The Author(s) 2019. Published by Oxford University Press.
Figures
Similar articles
-
In the Piriform Cortex, the Primary Impetus for Information Encoding through Synaptic Plasticity Is Provided by Descending Rather than Ascending Olfactory Inputs.Cereb Cortex. 2018 Feb 1;28(2):764-776. doi: 10.1093/cercor/bhx315. Cereb Cortex. 2018. PMID: 29186359
-
Modulation of synaptic plasticity in the hippocampus and piriform cortex by physiologically meaningful olfactory cues in an olfactory association task.J Physiol Paris. 1996;90(5-6):343-7. doi: 10.1016/s0928-4257(97)87916-8. J Physiol Paris. 1996. PMID: 9089510
-
Hippocampal subfield-specific Homer1a expression is triggered by learning-facilitated long-term potentiation and long-term depression at medial perforant path synapses.Hippocampus. 2021 Aug;31(8):897-915. doi: 10.1002/hipo.23333. Epub 2021 May 8. Hippocampus. 2021. PMID: 33964041
-
The Olfactory Mosaic: Bringing an Olfactory Network Together for Odor Perception.Perception. 2017 Mar-Apr;46(3-4):320-332. doi: 10.1177/0301006616663216. Epub 2016 Sep 29. Perception. 2017. PMID: 27687814 Free PMC article. Review.
-
Sleep and olfactory cortical plasticity.Front Behav Neurosci. 2014 Apr 22;8:134. doi: 10.3389/fnbeh.2014.00134. eCollection 2014. Front Behav Neurosci. 2014. PMID: 24795585 Free PMC article. Review.
Cited by
-
The BDNF mimetic R-13 attenuates TBI pathogenesis using TrkB-related pathways and bioenergetics.Biochim Biophys Acta Mol Basis Dis. 2023 Oct;1869(7):166781. doi: 10.1016/j.bbadis.2023.166781. Epub 2023 Jun 5. Biochim Biophys Acta Mol Basis Dis. 2023. PMID: 37286142 Free PMC article.
-
RGS14 expression in CA2 hippocampus, amygdala, and basal ganglia: Implications for human brain physiology and disease.Hippocampus. 2023 Mar;33(3):166-181. doi: 10.1002/hipo.23492. Epub 2022 Dec 21. Hippocampus. 2023. PMID: 36541898 Free PMC article. Review.
-
Olfactory Evaluation in Alzheimer's Disease Model Mice.Brain Sci. 2022 May 6;12(5):607. doi: 10.3390/brainsci12050607. Brain Sci. 2022. PMID: 35624994 Free PMC article. Review.
-
LRP4 is required for the olfactory association task in the piriform cortex.Cell Biosci. 2022 May 7;12(1):54. doi: 10.1186/s13578-022-00792-9. Cell Biosci. 2022. PMID: 35526070 Free PMC article.
-
Aging differentially affects LTCC function in hippocampal CA1 and piriform cortex pyramidal neurons.Cereb Cortex. 2023 Feb 7;33(4):1489-1503. doi: 10.1093/cercor/bhac152. Cereb Cortex. 2023. PMID: 35437602 Free PMC article.
References
-
- Abraham WC, Mason-Parker SE, Irvine GI, Logan B, Gill AI. 2006. Induction and activity-dependent reversal of persistent LTP and LTD in lateral perforant path synapses in vivo. Neurobiol Learn Mem. 86:82–90. - PubMed
-
- Adams JC. 1992. Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem. 40:1457–1463. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
