Susceptibility and resilience to stress depend on 1) the timing of the exposure with respect to development, 2) the time across the life span at which effects are measured, and 3) the behavioral or biological phenotype under consideration. This translational review examines preclinical stress models that provide clues to causal mechanisms and their relationship to the more complex phenomenon of stress-related psychiatric and cognitive disorders in humans. We examine how genetic sex and epigenetic regulation of hormones contribute to the proximal and distal effects of stress at different epochs of life. Stress during the prenatal period and early postnatal life puts male offspring at risk of developing diseases involving socialization, such as autism spectrum disorder, and attention and cognition, such as attention-deficit/hyperactivity disorder. While female offspring show resilience to some of the proximal effects of prenatal and early postnatal stress, there is evidence that risk associated with developmental insults is unmasked in female offspring following periods of hormonal activation and flux, including puberty, pregnancy, and perimenopause. Likewise, stress exposures during puberty have stronger proximal effects on girls, including an increased risk of developing mood-related and stress-related illnesses, such as depression, anxiety, and posttraumatic stress disorder. Hormonal changes during menopause and andropause impact the processes of memory and emotion in women and men, though women are preferentially at risk for dementia, and childhood adversity further impacts estradiol effects on neural function. We propose that studies to determine mechanisms for stress risk and resilience across the life span must consider the nature and timing of stress exposures as well as the sex of the organism under investigation.
Keywords: CRF; Epigenetics; Estrogens; Mood disorders; Sex differences; Stress.
Copyright © 2019 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.