Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep;46(9):3823-3832.
doi: 10.1002/mp.13669. Epub 2019 Jul 9.

Prediction of dosimetric accuracy for VMAT plans using plan complexity parameters via machine learning

Affiliations

Prediction of dosimetric accuracy for VMAT plans using plan complexity parameters via machine learning

Tomohiro Ono et al. Med Phys. 2019 Sep.

Abstract

Purpose: The dosimetric accuracies of volumetric modulated arc therapy (VMAT) plans were predicted using plan complexity parameters via machine learning.

Methods: The dataset consisted of 600 cases of clinical VMAT plans from a single institution. The predictor variables (n = 28) for each plan included complexity parameters, machine type, and photon beam energy. Dosimetric measurements were performed using a helical diode array (ArcCHECK), and the dosimetric accuracy of the passing rates for a 5% dose difference (DD5%) and gamma index of 3%/3 mm (γ3%/3 mm) were predicted using three machine learning models: regression tree analysis (RTA), multiple regression analysis (MRA), and neural networks (NNs). First, the prediction models were applied to 500 cases of the VMAT plans. Then, the dosimetric accuracy was predicted using each model for the remaining 100 cases (evaluation dataset). The error between the predicted and measured passing rates was evaluated.

Results: For the 600 cases, the mean ± standard deviation of the measured passing rates was 92.3% ± 9.1% and 96.8% ± 3.1% for DD5% and γ3%/3 mm, respectively. For the evaluation dataset, the mean ± standard deviation of the prediction errors for DD5% and γ3%/3 mm was 0.5% ± 3.0% and 0.6% ± 2.4% for RTA, 0.0% ± 2.9% and 0.5% ± 2.4% for MRA, and -0.2% ± 2.7% and -0.2% ± 2.1% for NN, respectively.

Conclusions: NNs performed slightly better than RTA and MRA in terms of prediction error. These findings may contribute to increasing the efficiency of patient-specific quality-assurance procedures.

Keywords: VMAT; dosimetric accuracy; machine learning models.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Low DA, Moran JM, Dempsey JF, Dong L, Oldham M. Dosimetry tools and techniques for IMRT. Med Phys. 2011;38:1313-1338.
    1. Letourneau D, Publicover J, Kozelka J, Moseley DJ, Jaffray DA. Novel dosimetric phantom for quality assurance of volumetric modulated arc therapy. Med Phys. 2009;36:1813-1821.
    1. van Elmpt W, McDermott L, Nijsten S, Wendling M, Lambin P, Mijnheer B. A literature review of electronic portal imaging for radiotherapy dosimetry. Radiother Oncol. 2008;88:289-309.
    1. Kry SF, Molineu A, Kerns JR, et al. Institutional patient-specific IMRT QA does not predict unacceptable plan delivery. Int J Radiat Oncol Biol Phys. 2014;90:1195-1201.
    1. Kalet AM, Luk SMH, Phillips MH. Quality assurance tasks and tools: The many roles of machine learning. Med Phys. 2019; in press.

MeSH terms

LinkOut - more resources