Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jun 21;12(1):63.
doi: 10.1186/s13045-019-0759-9.

MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer

Affiliations
Free PMC article
Review

MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer

Qiming Wang et al. J Hematol Oncol. .
Free PMC article

Abstract

Treatment of non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) activating mutation with EGFR-TKIs has achieved great success, yet faces the development of acquired resistance as the major obstacle to long-term disease remission in the clinic. MET (or c-MET) gene amplification has long been known as an important resistance mechanism to first- or second-generation EGFR-TKIs in addition to the appearance of T790 M mutation. Recent preclinical and clinical studies have suggested that MET amplification and/or protein hyperactivation is likely to be a key mechanism underlying acquired resistance to third-generation EGFR-TKIs such as osimertinib as well, particularly when used as a first-line therapy. EGFR-mutant NSCLCs that have relapsed from first-generation EGFR-TKI treatment and have MET amplification and/or protein hyperactivation should be insensitive to osimertinib monotherapy. Therefore, combinatorial therapy with osimertinib and a MET or even a MEK inhibitor should be considered for these patients with resistant NSCLC carrying MET amplification and/or protein hyperactivation.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Chemical structures of third-generation EGFR-TKIs
Fig. 2
Fig. 2
MET protein structure (a) and HGF/MET signaling pathway (b). GRB, growth factor receptor-bound protein; SHC, Src homology 2 domain-containing; PI3K, phosphatidylinositol 3-kinase; SOS, son of sevenless; SHP2, Src homology region 2-containing protein tyrosine phosphatase 2; FAK, focal adhesion kinase
Fig. 3
Fig. 3
MET amplification causes EGFR-TKI resistance by activating EGFR-independent phosphorylation of ErbB3 and downstream activation of the PI3K/AKT pathway, providing a bypass resistance mechanism in the presence of an EGFR-TKI. MET can also activate PI3K/Akt signaling through ErbB3. In EGFRm NSCLCs with MET amplification, EGFR-TKIs can still inhibit EGFR phosphorylation but not ErbB3 phosphorylation, leading to persistent activation of PI3K/Akt signaling via ErbB3 in an EGFR-independent manner
Fig. 4
Fig. 4
Current treatment options for EGFR-mutant NSCLCs and potential strategies for overcoming acquired resistance to osimertinib. The strategies as indicated with dashed lines need clinical validation. METi, MET inhibitor; MEKi, MEK inhibitor
Fig. 5
Fig. 5
Chemical structures of small molecule MET inhibitors with their target specificities. IC50, half maximal inhibitory concentration; VEGFR2, vascular endothelial growth factor receptor 2; RET, rearranged during transfection; ALK, anaplastic lymphoma kinase; RON, Recepteur d'Origine Nantais

Similar articles

Cited by

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. - PubMed
    1. Tartarone A, Lerose R. Clinical approaches to treat patients with non-small cell lung cancer and epidermal growth factor receptor tyrosine kinase inhibitor acquired resistance. Ther Adv Respir Dis. 2015;9(5):242–250. - PubMed
    1. Juchum M, Gunther M, Laufer SA. Fighting cancer drug resistance: opportunities and challenges for mutation-specific EGFR inhibitors. Drug Resist Updat. 2015;20:10–28. - PubMed
    1. Remon J, Moran T, Majem M, Reguart N, Dalmau E, Marquez-Medina D, Lianes P. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: a new era begins. Cancer Treat Rev. 2014;40:93–101. - PubMed
    1. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Janne PA. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–1043. - PubMed

Publication types

MeSH terms