Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 46 (11), 1611-1620

Efficient Production of Levan Using a Recombinant Yeast Saccharomyces Cerevisiae Hypersecreting a Bacterial Levansucrase

Affiliations

Efficient Production of Levan Using a Recombinant Yeast Saccharomyces Cerevisiae Hypersecreting a Bacterial Levansucrase

Hyunjun Ko et al. J Ind Microbiol Biotechnol.

Abstract

Levan is a fructose polymer with diverse applications in the food and medical industries. In this study, levansucrase from Rahnella aquatilis (RaLsrA) was hyper-secreted using a Saccharomyces cerevisiae protein secretion system. An optimal secretion signal, a translation fusion partner (TFP) containing an N-terminal 98 amino acid domain from a mitochondrial inner membrane protein, UTH1, was employed to secrete approximately 50 U/mL of bioactive RaLsrA into culture media with 63% secretion efficiency by fed-batch fermentation. Although the purified RaLsrA was useful for enzymatic conversion of high-molecular-weight levan of approximately 3.75 × 106 Da, recombinant yeast secreting RaLsrA could produce levan more efficiently by microbial fermentation. In a 50-L scale fermenter, 76-g/L levan was directly converted from 191-g/L sucrose by recombinant yeast cells, attaining an 80% conversion yield and 3.17-g/L/h productivity. Thus, we developed a cost-effective and industrially applicable production system for food-grade levan.

Keywords: Direct fermentation; Levan; Levansucrase; Recombinant protein expression; Saccharomyces cerevisiae.

Similar articles

See all similar articles

Cited by 1 article

References

    1. Plant Physiol. 1995 Jan;107(1):125-130 - PubMed

References

    1. Nat Rev Drug Discov. 2006 Mar;5(3):197-209 - PubMed

References

    1. Adv Appl Microbiol. 1990;35:171-94 - PubMed

References

    1. Enzyme Microb Technol. 2001 Feb 1;28(2-3):139-144 - PubMed

References

    1. J Pathol. 1977 Nov;123(3):157-64 - PubMed

References

    1. J Biosci Bioeng. 2010 Mar;109(3):240-3 - PubMed

References

    1. Carbohydr Polym. 2014 Jan 30;101:975-81 - PubMed

References

    1. Lancet. 1969 Apr 5;1(7597):697-9 - PubMed

References

    1. Appl Microbiol Biotechnol. 2017 May;101(10):4163-4174 - PubMed

References

    1. Sci Rep. 2015 Jul 21;5:12229 - PubMed

References

    1. Food Chem Toxicol. 2012 Mar;50(3-4):767-72 - PubMed

References

    1. PLoS One. 2013 Oct 11;8(10):e77499 - PubMed

References

    1. J Sci Food Agric. 2018 Mar;98(4):1539-1544 - PubMed

References

    1. Nucleic Acids Res. 1992 Mar 25;20(6):1425 - PubMed

References

    1. Yeast. 1996 Aug;12(10):953-63 - PubMed

References

    1. Carbohydr Polym. 2016 Jan 20;136:710-20 - PubMed

References

    1. Sci Rep. 2017 Jun 30;7(1):4428 - PubMed

References

    1. Biotechnol Adv. 2011 Jan-Feb;29(1):54-66 - PubMed

References

    1. Carbohydr Polym. 2017 Feb 10;157:1732-1740 - PubMed

References

    1. Bioinspir Biomim. 2018 Nov 20;14(1):011001 - PubMed

References

    1. Int J Biol Macromol. 2004 Apr;34(1-2):37-41 - PubMed

References

    1. FEMS Microbiol Lett. 2015 Jun;362(11):null - PubMed

References

    1. Chem Commun (Camb). 2015 Jan 4;51(1):107-10 - PubMed

References

    1. Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a000398 - PubMed

References

    1. J Microbiol Biotechnol. 2009 Oct;19(10):1153-60 - PubMed

References

    1. J Ind Microbiol Biotechnol. 2014 Jun;41(6):893-906 - PubMed

References

    1. Biotechnol Adv. 2016 Sep-Oct;34(5):827-844 - PubMed

References

    1. Ann N Y Acad Sci. 1998 Dec 13;864:506-11 - PubMed

References

    1. Appl Environ Microbiol. 2003 Apr;69(4):2073-9 - PubMed

References

    1. J Bacteriol. 1995 May;177(10):2834-9 - PubMed

LinkOut - more resources

Feedback