Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jun 21;12(2):96.
doi: 10.3390/ph12020096.

Ferritin in Kidney and Vascular Related Diseases: Novel Roles for an Old Player

Affiliations
Free PMC article
Review

Ferritin in Kidney and Vascular Related Diseases: Novel Roles for an Old Player

József Balla et al. Pharmaceuticals (Basel). .
Free PMC article

Abstract

Iron is at the forefront of a number of pivotal biological processes due to its ability to readily accept and donate electrons. However, this property may also catalyze the generation of free radicals with ensuing cellular and tissue toxicity. Accordingly, throughout evolution numerous pathways and proteins have evolved to minimize the potential hazardous effects of iron cations and yet allow for readily available iron cations in a wide variety of fundamental metabolic processes. One of the extensively studied proteins in the context of systemic and cellular iron metabolisms is ferritin. While clinicians utilize serum ferritin to monitor body iron stores and inflammation, it is important to note that the vast majority of ferritin is located intracellularly. Intracellular ferritin is made of two different subunits (heavy and light chain) and plays an imperative role as a safe iron depot. In the past couple of decades our understanding of ferritin biology has remarkably improved. Additionally, a significant body of evidence has emerged describing the significance of the kidney in iron trafficking and homeostasis. Here, we briefly discuss some of the most important findings that relate to the role of iron and ferritin heavy chain in the context of kidney-related diseases and, in particular, vascular calcification, which is a frequent complication of chronic kidney disease.

Keywords: acute kidney injury; chronic kidney disease; ferritin; iron; vascular calcification.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overall schematic of the proposed mechanism of the inhibition of VSMC calcification via the upregulation of FtH. The figure depicts a vascular smooth muscle cell (VSMC) where elevated levels of Pi (phosphorus) induce the upregulation of cbfa-1 (core binding factor alpha-1), leading to the deposition of extracellular Ca/Pi (hydroxyapatite crystals) and the activation of osteoblastic genes, including OC (osteocalcin) and ALP (alkaline phosphatase). This process can be exacerbated by the deletion of FtH (ferritin heavy chain) or mitigated via D3T (3H-1,2-Dithiole-3-thione) and Fe (iron)-induced FtH upregulation. There may still be novel genes and pathways modulated by FtH expression that require further investigations.

Similar articles

Cited by

References

    1. Haber F., Weiss J. The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1934;147:332–351.
    1. Fenton H.J.H. LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894;65:899–910. doi: 10.1039/CT8946500899. - DOI
    1. Laufberger V. Sur la cristallisation de la ferritine. Bull. Soc. Chim. Biol. 1937;19:1575–1582.
    1. Arosio P., Ingrassia R., Cavadini P. Ferritins: A family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta. 2009;1790:589–599. doi: 10.1016/j.bbagen.2008.09.004. - DOI - PubMed
    1. Arosio P., Levi S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim. Biophys. Acta. 2010;1800:783–792. doi: 10.1016/j.bbagen.2010.02.005. - DOI - PubMed

LinkOut - more resources