Factors Influencing Recombinant Protein Secretion Efficiency in Gram-Positive Bacteria: Signal Peptide and Beyond

Front Bioeng Biotechnol. 2019 Jun 11:7:139. doi: 10.3389/fbioe.2019.00139. eCollection 2019.

Abstract

Signal peptides are short peptides directing newly synthesized proteins toward the secretory pathway. These N-terminal signal sequences are ubiquitous to all prokaryotes and eukaryotes. Signal peptides play a significant role in recombinant protein production. Previous studies have demonstrated that the secretion amount of a given target protein varies significantly depending on the signal peptide that is fused to the protein. Signal peptide selection and signal peptide modification are the two main methods for the optimization of a recombinant protein secretion. However, the highly efficient signal peptide for a target protein with a specific bacterial expression host is not predictable so far. In this article, we collect several signal peptides that have previously performed well for recombinant protein secretion in gram-positive bacteria. We also discuss several factors influencing recombinant protein secretion efficiency in gram-positive bacteria. Signal peptides with a higher charge/length ratio in n-region, more consensus residues at the-3 and-1positions in c-region and a much higher proportion of coils are more likely to perform well in the secretion of recombinant proteins. These summaries can be utilized to the selection and directed modification of signal peptides for a given recombinant protein.

Keywords: gram-positive bacteria; recombinant protein; secretion efficiency; secretory pathway; signal peptide.