Two-bottle choice tests are a widely used paradigm in rodents to determine preference between two liquids, with utility for testing animal models of addiction, depression and anhedonia. The following paper describes a 3D-printed, Arduino controlled two-bottle choice test that automatically reads and records drinking behavior in rats to allow for detailed analysis of their drinking microstructure. While commercial products exist use lickometers to measure the microstructure of licking, this design uniquely incorporates hydrostatic depth sensors to allow for real-time volumetric measurements in addition to traditional beam break lick sensing, allowing for licking and drinking microstructure analysis. The goal of this design is to provide a user friendly, affordable apparatus that can study unique, complex behaviors without requiring the purchase of specialized scientific equipment or software. Its applications range from studying alcohol preference in animal models of addiction to sucrose preference in motivational deficits and reward evaluation. This design costs less than $180 CAD to build with decreased cost on each additional device. This design has been successfully tested for accuracy and validated using alcohol preference as an example. The apparatus showed consistency between drinking bouts and volume consumed and is shown to be accurate to ±0.086 ml of the actual volume. This design makes using the two-bottle choice paradigm more accurate, while also making its data more robust and informative while allowing for microstructure analysis of both licking behavior and volume consumed.
Keywords: Addiction; Anhedonia; Consummatory Behavior; Lickometer; Preference.