Distinct Chemokine Dynamics in Early Postoperative Period after Open and Robotic Colorectal Surgery

J Clin Med. 2019 Jun 19;8(6):879. doi: 10.3390/jcm8060879.

Abstract

Stress response to robot-assisted colorectal surgery is largely unknown. Therefore, we conducted a prospective comparative nonrandomized study evaluating the perioperative dynamics of chemokines: IL-8/CXCL8, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5, and eotaxin-1/CCL11 in 61 colorectal cancer patients following open colorectal surgery (OCS) or robot-assisted surgery (RACS) in reference to clinical data. Postoperative IL-8 and MCP-1 increase was reduced in RACS with a magnitude of blood loss, length of surgery, and concomitant up-regulation of IL-6 and TNFα as its independent predictors. RANTES at 8 h dropped in RACS and RANTES, and MIP1α/β at 24 h were more elevated in RACS than OCS. IL-8 and MCP-1 at 72 h remained higher in patients subsequently developing surgical site infections, in whom a 2.6- and 2.5-fold increase was observed. IL-8 up-regulation at 24 h in patients undergoing open procedure was predictive of anastomotic leak (AL; 94% accuracy). Changes in MCP-1 and RANTES were predictive of delayed restoration of bowel function. Chemokines behave differently depending on procedure. A robot-assisted approach may be beneficial in terms of chemokine dynamics by favoring Th1 immunity and attenuated angiogenic potential and postoperative ileus. Monitoring chemokine dynamics may prove useful for predicting adverse clinical events. Attenuated chemokine up-regulation results from less severe blood loss and diminished inflammatory response.

Keywords: Th1/Th2 balance; anastomotic leak; interleukin-8; minimally invasive surgery; monocyte chemoattractant protein-1 (MCP1); postoperative ileus; robotic surgery; surgical site infection; surgical stress response.