Intermetallic Nanoparticles: Synthetic Control and Their Enhanced Electrocatalysis

Acc Chem Res. 2019 Jul 16;52(7):2015-2025. doi: 10.1021/acs.accounts.9b00172. Epub 2019 Jun 28.

Abstract

Intermetallic nanoparticles (NPs) described in this Account are a class of metallic alloy NPs within which metal atoms are bonded via strong d-orbital interaction and ordered anisotropically in a specific crystallographic direction. Compared to the common metallic alloy NPs with solid solution structure, intermetallic NPs are generally more stable against chemical oxidation and etching. The strict stoichiometry requirement, well-defined atom binding environment and layered atomic arrangement also make intermetallic NPs an ideal model for understanding their physical and catalytic properties. This account summarizes the synthetic principles and strategies developed to obtain monodisperse intermetallic NPs, especially tetragonal L10-NPs. The thermodynamics and kinetics involved in the conversion between disordered and ordered structures are briefly discussed. The synthetic methods are grouped into two slightly different categories: solution-phase synthesis followed by solid state annealing and direct solution-phase synthesis. In the former method, high-surface-area supports are often needed to disperse NPs and to prevent them from aggregation, while in the latter method such supports are not required since the structure conversion temperature is lowered to a level that the conversion can proceed in the solution reaction condition. In any of these two synthetic approaches, various factors influencing intermetallic structure formation should be carefully controlled to ensure more complete structural transition within NPs. Using representative synthetic examples, we highlight the strategies explored to facilitate the formation of intermetallic structure, including the introduction of vacancies/defects within NP structures and the control of atom addition rate/seed-mediated diffusion to lower the energy barrier. These strategies illustrate how the concept of thermodynamics and kinetics can be used to design the synthesis of intermetallic NPs. Additionally, to correlate NP structure and catalysis, we introduce briefly the d-band theory to explain how the electronic, strain and ensemble effects can be used to tune NP catalysis. We focus specifically on Pt-, Pd-, and Au-based L10-NPs and demonstrate how these L10-NPs could be prepared to show much enhanced catalysis for electrochemical reactions, including oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and thermo-oxidation reaction of CO. Due to the enhanced metal atom stability in the "sandwich"-type structure, the roles of the first-row transition metal atoms in catalysis are better understood to achieve catalysis optimization. This concept can be extended to other alloy NPs, demonstrating great potentials in using intermetallic structures to control NP reduction and oxidation catalysis for important chemical and energy applications.