Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells

Neuron. 2019 Aug 21;103(4):642-657.e7. doi: 10.1016/j.neuron.2019.05.044. Epub 2019 Jun 26.

Abstract

Neuronal subtypes show diverse injury responses, but the molecular underpinnings remain elusive. Using transgenic mice that allow reliable visualization of axonal fate, we demonstrate that intrinsically photosensitive retinal ganglion cells (ipRGCs) are both resilient to cell death and highly regenerative. Using RNA sequencing (RNA-seq), we show genes that are differentially expressed in ipRGCs and that associate with their survival and axon regeneration. Strikingly, thrombospondin-1 (Thbs1) ranked as the most differentially expressed gene, along with the well-documented injury-response genes Atf3 and Jun. THBS1 knockdown in RGCs eliminated axon regeneration. Conversely, RGC overexpression of THBS1 enhanced regeneration in both ipRGCs and non-ipRGCs, an effect that was dependent on syndecan-1, a known THBS1-binding protein. All structural domains of the THBS1 were not equally effective; the trimerization and C-terminal domains promoted regeneration, while the THBS type-1 repeats were dispensable. Our results identify cell-type-specific induction of Thbs1 as a novel gene conferring high regenerative capacity.

Keywords: axon growth; axon injury; axon regeneration; extracellular matrix protein; ipRGCs; melanopsin; retina; retinal ganglion cells; syndecan; thrombospondin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Axons / metabolism
  • Cell Line
  • Female
  • Gene Expression Profiling
  • Genes, Reporter
  • Insulin-Like Growth Factor I / deficiency
  • Insulin-Like Growth Factor I / physiology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Mice, Transgenic
  • Nerve Crush
  • Nerve Regeneration / physiology*
  • Optic Nerve Injuries / genetics
  • Optic Nerve Injuries / physiopathology
  • Recombinant Fusion Proteins / biosynthesis
  • Recombinant Fusion Proteins / genetics
  • Retinal Ganglion Cells / physiology*
  • Rod Opsins / deficiency
  • Rod Opsins / physiology
  • T-Box Domain Proteins / deficiency
  • T-Box Domain Proteins / physiology
  • Thrombospondin 1 / biosynthesis
  • Thrombospondin 1 / genetics
  • Thrombospondin 1 / physiology*
  • Transcription, Genetic

Substances

  • Eomes protein, mouse
  • Recombinant Fusion Proteins
  • Rod Opsins
  • T-Box Domain Proteins
  • Thrombospondin 1
  • insulin-like growth factor-1, mouse
  • melanopsin
  • Insulin-Like Growth Factor I