Ozone is a strong oxidant in air pollution that exacerbates respiratory disorders and is a major risk factor for acute asthma exacerbation. Ozone can induce reactive oxygen species (ROS) and airway neutrophilic inflammation. In addition, γδT17 cells contribute to IL-17A production upon ozone challenge, resulting in neutrophilic inflammation. It is known, however, that Nrf2 can ameliorate oxidative stress. We therefore investigated whether RTA-408, an Nrf2 activator, can attenuate airway inflammation and inhibit ROS production and whether this effect involves γδT17 cells. Balb/c mice were sensitized/challenged with ovalbumin (OVA) and followed by ozone exposure. We investigated the effect of Nrf2 activator RTA-408 on airway hyperresponsiveness, neutrophilic airway inflammation, cytokine/chemokine production, and OVA-specific IgE level in a mouse model of O3 induced asthma exacerbation. Furthermore, malondialdehyde (MDA) and glutathione (GSH) levels in lung and intracellular ROS were measured. IL-17+ γδT cell percentage by flow cytometer was determined. Nrf2 protein expression by western blot was also examined. We observed that RTA-408 attenuated ROS release during ozone-induced asthma exacerbation and suppressed neutrophil lung infiltration. RTA-408 decreased pro-inflammatory cytokine production and reduced the percentage of IL-17+ γδT cells. Thus, our results suggest that RTA-408 does attenuate airway inflammation in a murine model of ozone-induced asthma exacerbation.
Keywords: Nrf2; asthma exacerbation; oxidative stress; ozone; γδT17 cell.