Findings from a mobile application-based cohort are consistent with established knowledge of the menstrual cycle, fertile window, and conception

Fertil Steril. 2019 Sep;112(3):450-457.e3. doi: 10.1016/j.fertnstert.2019.05.008. Epub 2019 Jul 1.

Abstract

Objective: To investigate the validity of self-reported fertility data generated by a mobile application-based cohort in comparison with data collected by traditional clinical methodologies.

Design: Data were collected from July 2013 to July 2018 through a mobile application designed to track fertility. Bayesian hierarchical models were used to assess day-specific pregnancy probabilities. Descriptive statistics were used to estimate differences in day of ovulation and lengths of menstrual phases and to assess changes in the cervix and ovulation-related symptoms drawing closer to the day of ovulation.

Setting: Not applicable.

Patient(s): Data consisted of 225,596 menstrual cycles from 98,903 women.

Intervention(s): None.

Main outcome measure(s): Day-specific probabilities of pregnancy, variability in lengths of the follicular and luteal phases, trends in prevalence of symptoms and cervix changes across the fertile window.

Result(s): Analyses were consistent with established clinical knowledge. Probability of conception was highest during the 5 days before and day of ovulation, with the highest probability occurring the day before ovulation. The average cycle length was 29.6 days, and average lengths of the follicular and luteal phases were 15.8 and 13.7 days, respectively. Closer to day of ovulation, women were more likely to report changes in the cervix corresponding to fluid consistency, feel, position, and openness and symptoms associated with ovulation, including pelvic pain, tender breasts, increased sex drive, and cramps.

Conclusion(s): Components of the menstrual cycle and fertile window, when re-evaluated with a mobile application-based cohort, were found to be consistent with established clinical knowledge, suggesting an agreement between traditional and modern data collection methodologies.

Keywords: Day-specific probabilities of conception; fertile window; menstrual cycle; mobile application; validation.

MeSH terms

  • Adolescent
  • Adult
  • Cohort Studies
  • Female
  • Fertility / physiology*
  • Fertilization / physiology*
  • Follow-Up Studies
  • Humans
  • Menstrual Cycle / physiology*
  • Mobile Applications / standards*
  • Ovulation Detection / methods*
  • Ovulation Detection / standards*
  • Pregnancy
  • Pregnancy Outcome / epidemiology
  • Self Report
  • Young Adult